## CS 221: Computational Complexity

Prof. Salil Vadhan

Problem Set 2

Assigned: Fri. Feb. 21, 2014 Due: Fri. Mar. 7, 2014 (5 PM sharp)

- You must *type* your solutions. LaTeX, Microsoft Word, and plain ascii are all acceptable. Submit your solutions *via email* to cs221-hw@seas.harvard.edu. If you use LaTeX, please submit both the compiled file (.pdf) and the source (.tex). Please name your files PS2-yourlastname.\*.
- Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details. Do not despair if you cannot solve all the problems! Difficult problems are included to stimulate your thinking and for your enjoyment, not to overwork you. \*'ed problems are extra credit.

**Problem 1.** (BOOLEAN MATRIX MULTIPLICATION) Given two  $n \times n$  matrices A, B with Boolean entries, their Boolean product  $A \cdot B$  is the  $n \times n$  matrix C such that

$$C_{ij} = \bigvee_{k=1}^{n} (a_{ik} \wedge b_{kj})$$

- 1. Give a logspace algorithm to compute  $A \cdot B$  given A and B.
- 2. Given an  $n \times n$  matrix A and  $k \in \mathbb{N}$ , describe an  $O((\log n)(\log k))$ -space algorithm to compute  $A^k$ , the k'th Boolean power of A. (Hint: first consider k that is a power of 2)
- 3. Give another proof of Savitch's Theorem using Item 2.

**Problem 2.** (NL-completeness) Prove that 2SAT is NL-complete. (Hint: To prove that it is in NL, show that the satisfiability of  $\phi$  can be determined from the answers to polynomially many PATH questions involving the directed graph  $G_{\phi}$  that includes edges  $(\neg x, y)$  and  $(\neg y, x)$  for every clause  $(x \lor y)$  in  $\phi$ .)

**Problem 3.** (Complete Problems for PH) Show that if the PH has a complete problem, then the polynomial hierarchy collapses (i.e.  $PH = \Sigma_k^p$  for some k.)

**Problem 4.** (More Time-Space Tradeoffs for Satisfiability) The time-space tradeoffs done in class optimize the space lower bound  $(n^{1-\epsilon})$  while giving a relatively weak time lower bound  $(n^{1+o(1)})$ . On this problem, you'll do the opposite, giving a time lower bound of  $n^{1.41}$  while giving a weaker space lower bound  $(n^{o(1)})$ .

Do not worry about constructibility of the time and space bounds on this problem.

- 1. Show that for every  $T(n) \ge n^2$ ,  $\mathbf{TISP}(T, T^{o(1)}) \subseteq \Sigma_2 \mathbf{TIME}(T^{1/2+o(1)})$ .
- 2. Use the above to prove that SAT  $\notin$  **TISP** $(n^c, n^{o(1)})$  for any  $c < \sqrt{2}$ . (Hint: Use a NONdeterministic-time Hierarchy Theorem.)

**Problem 5.** (regular expression problems) Consider regular expressions R with concatenation, union, Kleene star, and exponentiation. Recall that in class we showed the language  $ALL_{REX\uparrow} = \{R : L(R) = \Sigma^*\}$  is **EXPSPACE**-complete. Here we classify the complexity of variants of this problem.

- 1. Show that if we do not allow exponentiation, the problem becomes **PSPACE**-complete.
- 2. Show that the equivalence problem  $\{(R_1, R_2) : L(R_1) = L(R_2)\}$  where  $R_1$  and  $R_2$  are regular expressions with exponentiation but no Kleene stars is **coNEXP**-complete.