
CS 221: Computational Complexity Prof. Salil Vadhan

Problem Set 4

Assigned: Sat. Mar. 29, 2014 Due: Fri. Apr. 11, 2014 (5 PM sharp)

• You must type your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use LATEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS4-yourlastname.*.

• Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 1. (Cook reductions to promise problems) Note that for a promise problem Π,
“running an algorithm with oracle Π” is not in general well-defined, because it is not specified what
the oracle should return if the input violates the promise.1 Thus, when we say that a problem Γ
can be solved in polynomial time with oracle access to Π, we mean that there is a polynomial-time
oracle algorithm A such that for every oracle O : {0, 1}∗ → {0, 1} that solves Π (i.e. O is correct
on ΠY ∪ΠN ), it holds that AO solves Γ.

Let Π be the promise problem

ΠY
def
= {(ϕ,ψ) : ϕ ∈ SAT, ψ /∈ SAT}

ΠN
def
= {(ϕ,ψ) : ϕ /∈ SAT, ψ ∈ SAT}

Show that Π ∈ prNP ∩ prcoNP but SAT ∈ prPΠ. Deduce that prNP ⊆ prPprNP∩prcoNP.
Note that an analogous inclusion seems unlikely for language classes, since PNP∩coNP = NP ∩
coNP.

Problem 2. (one-sided error vs. two-sided error)

1. Show that if NP ⊆ BPP, then NP = RP.

2. (*) Show that prBPP ⊆ prRPprRP, and thus prRP = prP iff prBPP = prP. (Hint: look
at the proof that BPP ⊆ PH.)

1A similar issue comes up with problems where there are multiple valid answers on a given input, such as search or
approximation problems. Again, in such cases, we should require that the algorithm works correctly for every oracle
that solves the problem.

1



Problem 3. (A hierarchy theorem for prBPTIME) Recall that in class we attempted to
prove that for all time-constructible f, g such that f(n) log f(n) = o(g(n)), we have prBPTIME(f(n)) (
prBPTIME(g(n)). Specifically, we defined a probabilistic TM M that on input x, runs the x’th
probabilistic TM Mx on x for g(|x|) steps and outputs the opposite. Then we considered the
promise problem

ΠY = {x : Pr[M(x) = 1] ≥ 2/3}
ΠN = {x : Pr[M(x) = 1] ≤ 1/3}

and observed that Π ∈ prBPTIME(g(n)). However, we ran into a difficulty in showing that
Π /∈ prBPTIME(f(n)), i.e. every probabilistic time f(n) TM N fails to decide Π on some input
x ∈ ΠY ∪ ΠN . A natural choice is to take x so that N = Mx (so that M does the opposite of N
on input x). However, the problem was that x may not satisfy the promise for Π. Show how to fix
this problem using the “lazy diagonalization” method from the proof of the nondeterministic time
hierarchy theorem.

Problem 4. (#P-completeness)

1. A matching in a graph is a set S of edges such that every vertex touches at most one edge in
S (as opposed to exactly one, as required in a perfect matching). Show that #Matchings,
the problem of counting all the matchings in a graph, is #P-complete. (Hint: reduce from
#Perfect Matchings. Given a graph G, consider the graph Gk obtained by attaching k
new edges to each vertex of G. Gk has n+ nk vertices, where n is the number of vertices in
G. Show that the number of perfect matchings in G can be recovered from the number of
matchings in each of G0,. . . ,Gn.)

2. An independent set in a graph G is a set S of vertices such that no two elements of S are
connected by an edge in G. Prove that #Independent Sets, the problem of counting the
number of independent sets in a graph, is #P-complete.

3. Prove that #Mon2SAT, the problem of counting the number of satisfying assignments to a
monotone 2-CNF formula, is #P-complete.

2


