CS 221: Computational Complexity Prof. Salil Vadhan

Problem Set 4

Assigned: Sat. Mar. 29, 2014 Due: Fri. Apr. 11, 2014 (5 PM sharp)

e You must type your solutions. IATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use IXTEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS4-yourlastname. *.

e Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 1. (Cook reductions to promise problems) Note that for a promise problem II,
“running an algorithm with oracle II” is not in general well-defined, because it is not specified what
the oracle should return if the input violates the promise.! Thus, when we say that a problem I'
can be solved in polynomial time with oracle access to II, we mean that there is a polynomial-time
oracle algorithm A such that for every oracle O : {0,1}* — {0,1} that solves II (i.e. O is correct
on ITy UTIy), it holds that A® solves I

Let II be the promise problem

Oy = {(p,%):p e SAT,y ¢ SAT}
Iy = {(g,¥):p ¢ SAT, ¢ € SAT}

Show that IT € prNP N prcoNP but SAT € prP!!. Deduce that prNP C prPPrNPrprcoNP
Note that an analogous inclusion seems unlikely for language classes, since PNPNcoNP — NP N
coNP.

Problem 2. (one-sided error vs. two-sided error)

1. Show that if NP C BPP, then NP = RP.

2. (*) Show that prBPP C prRPP™RP and thus prRP = prP iff prBPP = prP. (Hint: look
at the proof that BPP C PH.)

LA similar issue comes up with problems where there are multiple valid answers on a given input, such as search or
approximation problems. Again, in such cases, we should require that the algorithm works correctly for every oracle
that solves the problem.




Problem 3. (A hierarchy theorem for prBPTIME) Recall that in class we attempted to
prove that for all time-constructible f, g such that f(n)log f(n) = o(g(n)), we have prBPTIME( f(n)) C
prBPTIME(g(n)). Specifically, we defined a probabilistic TM M that on input z, runs the x’th
probabilistic TM M, on z for g(|z|) steps and outputs the opposite. Then we considered the
promise problem

IIy = {z:Pr[M(z)=1]>2/3}
Iy = {z:Pr[M(z)=1]<1/3}

and observed that II € prBPTIME(g(n)). However, we ran into a difficulty in showing that
IT1 ¢ prBPTIME(f(n)), i.e. every probabilistic time f(n) TM N fails to decide IT on some input
x € lly UIly. A natural choice is to take x so that N = M, (so that M does the opposite of N
on input z). However, the problem was that  may not satisfy the promise for II. Show how to fix
this problem using the “lazy diagonalization” method from the proof of the nondeterministic time
hierarchy theorem.

Problem 4. (#P-completeness)

1. A matching in a graph is a set S of edges such that every vertex touches at most one edge in
S (as opposed to exactly one, as required in a perfect matching). Show that #MATCHINGS,
the problem of counting all the matchings in a graph, is #P-complete. (Hint: reduce from
#PERFECT MATCHINGS. Given a graph G, consider the graph G} obtained by attaching k
new edges to each vertex of G. G has n + nk vertices, where n is the number of vertices in
G. Show that the number of perfect matchings in G can be recovered from the number of
matchings in each of Gy,...,Gy.)

2. An independent set in a graph G is a set S of vertices such that no two elements of S are
connected by an edge in G. Prove that #INDEPENDENT SETS, the problem of counting the
number of independent sets in a graph, is #P-complete.

3. Prove that #MON2SAT, the problem of counting the number of satisfying assignments to a
monotone 2-CNF formula, is #P-complete.



