## CS 221: Computational Complexity

Prof. Salil Vadhan

Problem Set 4

Assigned: Sat. Mar. 29, 2014 Due: Fri. Apr. 11, 2014 (5 PM sharp)

- You must *type* your solutions. LaTeX, Microsoft Word, and plain ascii are all acceptable. Submit your solutions *via email* to cs221-hw@seas.harvard.edu. If you use LaTeX, please submit both the compiled file (.pdf) and the source (.tex). Please name your files PS4-yourlastname.\*.
- Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level details. Do not despair if you cannot solve all the problems! Difficult problems are included to stimulate your thinking and for your enjoyment, not to overwork you. \*'ed problems are extra credit.

**Problem 1.** (Cook reductions to promise problems) Note that for a promise problem  $\Pi$ , "running an algorithm with oracle  $\Pi$ " is not in general well-defined, because it is not specified what the oracle should return if the input violates the promise.<sup>1</sup> Thus, when we say that a problem  $\Gamma$  can be solved in polynomial time with oracle access to  $\Pi$ , we mean that there is a polynomial-time oracle algorithm A such that for *every* oracle  $O: \{0,1\}^* \to \{0,1\}$  that solves  $\Pi$  (i.e. O is correct on  $\Pi_Y \cup \Pi_N$ ), it holds that  $A^O$  solves  $\Gamma$ .

Let  $\Pi$  be the promise problem

$$\Pi_{Y} \stackrel{\text{def}}{=} \{(\varphi, \psi) : \varphi \in \text{SAT}, \psi \notin \text{SAT}\}$$

$$\Pi_{N} \stackrel{\text{def}}{=} \{(\varphi, \psi) : \varphi \notin \text{SAT}, \psi \in \text{SAT}\}$$

Show that  $\Pi \in \mathbf{prNP} \cap \mathbf{prcoNP}$  but  $SAT \in \mathbf{prP}^{\Pi}$ . Deduce that  $\mathbf{prNP} \subseteq \mathbf{prP^{prNP} \cap prcoNP}$ . Note that an analogous inclusion seems unlikely for language classes, since  $\mathbf{P^{NP \cap coNP}} = \mathbf{NP} \cap \mathbf{coNP}$ .

## Problem 2. (one-sided error vs. two-sided error)

- 1. Show that if  $\mathbf{NP} \subseteq \mathbf{BPP}$ , then  $\mathbf{NP} = \mathbf{RP}$ .
- 2. (\*) Show that  $\mathbf{prBPP} \subseteq \mathbf{prRP^{prRP}}$ , and thus  $\mathbf{prRP} = \mathbf{prP}$  iff  $\mathbf{prBPP} = \mathbf{prP}$ . (Hint: look at the proof that  $\mathbf{BPP} \subseteq \mathbf{PH}$ .)

<sup>&</sup>lt;sup>1</sup>A similar issue comes up with problems where there are multiple valid answers on a given input, such as search or approximation problems. Again, in such cases, we should require that the algorithm works correctly for every oracle that solves the problem.

**Problem 3.** (A hierarchy theorem for prBPTIME) Recall that in class we attempted to prove that for all time-constructible f, g such that  $f(n) \log f(n) = o(g(n))$ , we have **prBPTIME** $(f(n)) \subseteq$  **prBPTIME**(g(n)). Specifically, we defined a probabilistic TM M that on input x, runs the x'th probabilistic TM  $M_x$  on x for g(|x|) steps and outputs the opposite. Then we considered the promise problem

$$\Pi_Y = \{x : \Pr[M(x) = 1] \ge 2/3\}$$
  
 $\Pi_N = \{x : \Pr[M(x) = 1] \le 1/3\}$ 

and observed that  $\Pi \in \mathbf{prBPTIME}(g(n))$ . However, we ran into a difficulty in showing that  $\Pi \notin \mathbf{prBPTIME}(f(n))$ , i.e. every probabilistic time f(n) TM N fails to decide  $\Pi$  on some input  $x \in \Pi_Y \cup \Pi_N$ . A natural choice is to take x so that  $N = M_x$  (so that M does the opposite of N on input x). However, the problem was that x may not satisfy the promise for  $\Pi$ . Show how to fix this problem using the "lazy diagonalization" method from the proof of the nondeterministic time hierarchy theorem.

## Problem 4. (#P-completeness)

- 1. A matching in a graph is a set S of edges such that every vertex touches at most one edge in S (as opposed to exactly one, as required in a perfect matching). Show that #MATCHINGS, the problem of counting all the matchings in a graph, is #P-complete. (Hint: reduce from #PERFECT MATCHINGS. Given a graph G, consider the graph  $G_k$  obtained by attaching k new edges to each vertex of G.  $G_k$  has n + nk vertices, where n is the number of vertices in G. Show that the number of perfect matchings in G can be recovered from the number of matchings in each of  $G_0, \ldots, G_n$ .)
- 2. An *independent set* in a graph G is a set S of vertices such that no two elements of S are connected by an edge in G. Prove that #INDEPENDENT SETS, the problem of counting the number of independent sets in a graph, is #**P**-complete.
- 3. Prove that #Mon2SAT, the problem of counting the number of satisfying assignments to a monotone 2-CNF formula, is #P-complete.