CS 221: Computational Complexity Prof. Salil Vadhan

Problem Set 5

Assigned: Sun. Apr. 13, 2014 Due: Fri. Apr. 25, 2014 (5 PM sharp)

e You must type your solutions. IATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use IXTEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS5-yourlastname. *.

e Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 1. (Approximate Counting)

1. Prove that a fully polynomial randomized approximation scheme for #MATCHINGS implies a
fully polynomial almost-uniform sampler for MATCHINGS. (This is the converse of what we
showed in class.)

2. Show that approximating #INDEPENDENT SETS to within any constant factor is NP-hard.
(In contrast, there are a fully polynomial randomized approximation schemes known for
#PERFECT MATCHINGS and #MATCHINGS.)

Problem 2. (GRrAPH ISOMORPHISM) Since GRAPH ISOMORPHISM is in NP, it has a trivial
interactive proof where the prover simply sends the NP witness (the isomorphism) to the verifier.
Here, you will see how using randomness and interaction, we can obtain a different interactive proof
with the additional advantage of being “zero knowledge” — the verifier learns nothing other than
the fact that the graphs are isomorphic.

1. Show that the following protocol is an interactive proof for GRAPH ISOMORPHISM.
Protocol (P,V)(Go, G1), where Gy and G are both graphs on vertex set [n]:
(a) P finds (or gets as an auxiliary input) a permutation 7 € S,, such that 7(Gp) = G1,
(b) P chooses a uniformly random permutation p & S,,, sets H = p(G1), and sends H to V.
(¢) V flips a coin b <= {0,1}, and sends b to P.
(d) Ifb=0,Psendsp =pomtoV.Ifb=1, Psends ¢y =pto V.
(e) V accepts if ¥(Gp) = H.



2. Show that the above protocol is zero knowledge in the sense that when (Gp,Gi) € GI,
everything V sees, it could have generated efficiently on its own. That is, there is a proba-
bilistic polynomial-time “simulator” S such that when (G, G1) € GI, the output distribution
S(Go, G1) is identical to the distribution of V’s view of the protocol (P, V)(Go, G1) (namely

the triple (p,b,v)).

Problem 3. (Random self-reducibility) A function f : {0,1}* — {0,1}* is random self-
reducible under a sequence D,, of distributions (where D,, is a distribution on {0, 1}") if there is a
probabilistic polynomial-time oracle algorithm M such that for every n and every x € {0,1}",

1. Mf(z) = f(z), and
2. The oracle queries made by M7 (x) are each distributed according to D,,.
If in addition M'’s oracle calls are nonadaptive, we say that f is nonadaptively random self-reducible.

1. Show that if f is random self-reducible under D,, and f ¢ BPP, then there is a polynomial
p(n) such that f is not (1 — 1/p(n))-easy under D,,.

2. Explain why there are #P-complete, PSPACE-complete, and EXP-complete problems that
are randomly self-reducible under the uniform distribution U,,.

3. Show that if there were a nonadaptively random self-reducible NP-complete problem (under
any distribution D,,), then coNP C prAM /poly. The latter class is prAM with polynomial
advice. We use the promise class rather than the language class for technical reasons that you
need not worry about. (Hint: run M many times, take as advice the quantity Pr[D,, € L].)

4. (*) Show that if coNP C prAM/poly, then the PH collapses. Hence NP-complete problems
cannot be random self-reducible unless PH collapses.

Problem 4. (Collapse of the AM hierarchy)

1. For a class C of promise problems, we define prX - C to be the class of promise problems II
such that there exists a promise problem II' € C and a polynomial p for which

celly = 3ye{0,1}PW(z,y) eIl
relly = Vye{0,1}PMW(z,y) eIy

Similarly, we define prBP - C to be the class of promise problems II such that there exists a
promise problem II’ € C and a polynomial p for which

zelly = Pr  [(x,y) € Iy] >2/3
ye{0,1}p(m)

relly = Pr  [(z,y) € Iy] >2/3
ye{0,1}P(n)

Show that for every integer k > 1, prMA[k] = pr¥ - prAM[k — 1] and prAM][k] = prBP -
prMA [k — 1], where prMA[0] = prAM][0] = prP (by definition).

2. Prove that prMA C prAM. (Hint: First do error-reduction.)
3. Prove that for all k£ > 2, prAM[k] = prAM. Conclude that AM[k] = AM.

4. Where in the above parts was it important that we were working with promise problems?



