
CS 221: Computational Complexity Prof. Salil Vadhan

Problem Set 5

Assigned: Sun. Apr. 13, 2014 Due: Fri. Apr. 25, 2014 (5 PM sharp)

• You must type your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Sub-
mit your solutions via email to cs221-hw@seas.harvard.edu. If you use LATEX, please submit
both the compiled file (.pdf) and the source (.tex). Please name your files PS5-yourlastname.*.

• Strive for clarity and conciseness in your solutions, emphasizing the main ideas over low-level
details. Do not despair if you cannot solve all the problems! Difficult problems are included
to stimulate your thinking and for your enjoyment, not to overwork you. *’ed problems are
extra credit.

Problem 1. (Approximate Counting)

1. Prove that a fully polynomial randomized approximation scheme for #Matchings implies a
fully polynomial almost-uniform sampler for Matchings. (This is the converse of what we
showed in class.)

2. Show that approximating #Independent Sets to within any constant factor is NP-hard.
(In contrast, there are a fully polynomial randomized approximation schemes known for
#Perfect Matchings and #Matchings.)

Problem 2. (Graph Isomorphism) Since Graph Isomorphism is in NP, it has a trivial
interactive proof where the prover simply sends the NP witness (the isomorphism) to the verifier.
Here, you will see how using randomness and interaction, we can obtain a different interactive proof
with the additional advantage of being “zero knowledge” — the verifier learns nothing other than
the fact that the graphs are isomorphic.

1. Show that the following protocol is an interactive proof for Graph Isomorphism.
Protocol (P, V )(G0, G1), where G0 and G1 are both graphs on vertex set [n]:

(a) P finds (or gets as an auxiliary input) a permutation π ∈ Sn such that π(G0) = G1,

(b) P chooses a uniformly random permutation ρ
R←Sn, sets H = ρ(G1), and sends H to V .

(c) V flips a coin b
R←{0, 1}, and sends b to P .

(d) If b = 0, P sends ψ = ρ ◦ π to V . If b = 1, P sends ψ = ρ to V .

(e) V accepts if ψ(Gb) = H.

1



2. Show that the above protocol is zero knowledge in the sense that when (G0, G1) ∈ GI,
everything V sees, it could have generated efficiently on its own. That is, there is a proba-
bilistic polynomial-time “simulator” S such that when (G0, G1) ∈ GI, the output distribution
S(G0, G1) is identical to the distribution of V ’s view of the protocol (P, V )(G0, G1) (namely
the triple (ρ, b, ψ)).

Problem 3. (Random self-reducibility) A function f : {0, 1}∗ → {0, 1}∗ is random self-
reducible under a sequence Dn of distributions (where Dn is a distribution on {0, 1}n) if there is a
probabilistic polynomial-time oracle algorithm M such that for every n and every x ∈ {0, 1}n,

1. Mf (x) = f(x), and

2. The oracle queries made by Mf (x) are each distributed according to Dn.

If in addition M ’s oracle calls are nonadaptive, we say that f is nonadaptively random self-reducible.

1. Show that if f is random self-reducible under Dn and f /∈ BPP, then there is a polynomial
p(n) such that f is not (1− 1/p(n))-easy under Dn.

2. Explain why there are #P-complete, PSPACE-complete, and EXP-complete problems that
are randomly self-reducible under the uniform distribution Un.

3. Show that if there were a nonadaptively random self-reducible NP-complete problem (under
any distribution Dn), then coNP ⊆ prAM/poly. The latter class is prAM with polynomial
advice. We use the promise class rather than the language class for technical reasons that you
need not worry about. (Hint: run M many times, take as advice the quantity Pr[Dn ∈ L].)

4. (*) Show that if coNP ⊆ prAM/poly, then the PH collapses. Hence NP-complete problems
cannot be random self-reducible unless PH collapses.

Problem 4. (Collapse of the AM hierarchy)

1. For a class C of promise problems, we define prΣ ·C to be the class of promise problems Π
such that there exists a promise problem Π′ ∈ C and a polynomial p for which

x ∈ ΠY ⇒ ∃y ∈ {0, 1}p(n)(x, y) ∈ Π′Y

x ∈ ΠN ⇒ ∀y ∈ {0, 1}p(n)(x, y) ∈ Π′N

Similarly, we define prBP ·C to be the class of promise problems Π such that there exists a
promise problem Π′ ∈ C and a polynomial p for which

x ∈ ΠY ⇒ Pr
y∈{0,1}p(n)

[(x, y) ∈ Π′Y ] ≥ 2/3

x ∈ ΠN ⇒ Pr
y∈{0,1}p(n)

[(x, y) ∈ Π′N ] ≥ 2/3

Show that for every integer k ≥ 1, prMA[k] = prΣ · prAM[k − 1] and prAM[k] = prBP ·
prMA[k − 1], where prMA[0] = prAM[0] = prP (by definition).

2. Prove that prMA ⊆ prAM. (Hint: First do error-reduction.)

3. Prove that for all k ≥ 2, prAM[k] = prAM. Conclude that AM[k] = AM.

4. Where in the above parts was it important that we were working with promise problems?

2


