
CS 221: Computational Complexity

Problem Set 6 (Take-Home Final)

Assigned: Sun. Apr. 27, 2014 Due: Fri. May 9, 2014 (5 PM)

Exam Policies. You must work on this exam alone. The only references you may use are notes
from lecture and section, the problems sets and solutions, and the Arora–Barak text. You may
quote any result proven in class or in the text. Except on Problem 1, you may not use results that
were only stated without proof (unless you provide justification of your own). No late days are
permitted, and no credit will be given for work turned in after the deadline.

You must type your solutions. LATEX, Microsoft Word, and plain ascii are all acceptable. Submit
your solutions via email to cs221-hw@seas.harvard.edu. If you use LATEX, please submit both
the compiled file (.pdf) and the source (.tex). Please name your files PS6-yourlastname.*.

Problem 1. (Various relations) In this problem, you will describe everything that we know
(from this course) about the pairwise relationships between the following statements. In doing so,
you may use results stated without proof in class or in the texts. First, identify whether any of
the statements below are known to be true or false. For the remaining statements, draw a directed
graph showing all of the implications that follow from the results we have seen in class. (You do
not need to consider negations of the statements. And if you have implications A⇒ B and B ⇒ C,
you do not need to draw the implication A⇒ C.) Briefly justify your answers.

1. NEXP = PSPACE.

2. There is a logspace mapping reduction from 3SAT to 2SAT.

3. The polynomial-time hierarchy collapses.

4. Deciding whether an arithmetic formula over Z is identically zero can be done by polynomial-
sized boolean circuits.

5. (Exactly) counting the number of perfect matchings in a bipartite graph can be done by a
probabilistic polynomial-time algorithm with NP oracle.

6. There is an interactive proof system for proving that a regular expression with exponentiation
generates Σ∗.

7. Every language in NP can be decided by boolean circuits of polynomial size and polyloga-
rithmic depth.

Problem 2. (2-CSPs and 2-Query PCPs)

1. Give a (1/4)-approximation algorithm for Max-2CSP.

2. Show that there are constants 1 > c > s > 0 such that Gapc,sMax-2SAT is NP-hard.

[Hint: consider the gadget

(x1∨x2∨x3) 7→ (x1)∧(x2)∧(x3)∧(¬x1∨¬x2)∧(¬x2∨¬x3)∧(¬x3∨¬x1)∧(y)∧(x1∨¬y)∧(x2∨¬y)∧(x3∨¬y).]

1



3. Prove that for every s < c/4, PCPc,s(log n, 2) = P.

4. Prove that for some s < c, PCPc,s(log n, 2) = NP.

5. Prove that for every s < 1, PCP1,s(log n, 2) = P.

Problem 3. (Multiprover Interactive Proofs) In a p-prover interactive proof system for
a language L, p computationally unbounded provers P1, . . . , Pp try to convince a probabilistic
polynomial-time verifier V that some string x (given as common input to all parties) is in L. Prover
Pi does not get to see the communication between V and the other p− 1 provers, and the various
provers are not able to communicate during the interaction. (Thus it is like V is a police officer
interrogating several co-conspirators P1, . . . , Pp in separate rooms, to help detect inconsistencies in
their stories.) We require that on common input x ∈ L, V accepts with probability at least 2/3
when interacting with P1, . . . , Pp, and when x 6∈ L, V accepts with probability at most 1/3 no
matter what strategies P ∗

1 , . . . , P
∗
p the provers follow. p-MIP denotes the class of languages with

p-prover proof systems, and MIP =
⋃

p p-MIP.
Prove that MIP ⊆ PCP[poly,poly] ⊆ 2-MIP, and hence all three classes are equal. (Hint: for

the second inclusion, ask first prover all the PCP queries and use the second just to check that the
first is ‘behaving’ like a PCP. You may assume that error reduction can be done without increasing
the number of provers, but this is actually a very nontrivial fact — Raz’s Parallel Repetition
Theorem — and the error does not decrease as quickly as you’d expect.)

Problem 4. (Testing Graph Properties) A graph G = (V,E) is a biclique if there is a
partition (V1, V2) of V such that E = V1 × V2. Consider the following promise problem:

(TestεBiClique)Y = {G : G is a biclique}.
(TestεBiClique)N = {G : G is ε-far from every biclique},

where we represent the graph G by its adjacency matrix, consisting of N = n2 bits, and we say that
two graphs are ε-far if their adjacency matrices differ on at least ε ·N entries. In this problem, we
will explore the possibility of sublinear-time algorithms for this promise problem, and thus assume
a model of computation where the algorithm has random access (equivalently, oracle access) to its
input.

1. Show that for every constant ε > 0, TestεBiClique is in prBPTIME(O(logN)). (Hint:

fix an arbitrary vertex v0 ∈ V , randomly pick u,w
R←V , and check which of the edges (v0, u),

(v0, w), and (u,w) are in G.)

2. Show that for some constant ε > 0, TestεBiClique is not in prDTIME(o(N)).

Thus, even though there is evidence that BPP = P (and also prBPP = prP), when we con-
sider sublinear time, randomization provably provides an exponential savings over deterministic
algorithms.

2


