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1 Circuit Size Bounds

Proposition 1 Every function f : {0, 1}n → {0, 1} can be computed by a circuit of size O(n2n)
over the basis S = {∧,∨,¬}.

Proof: We can write the truth table of f in DNF:

f(x) =
∨

α:f(α)=1

(∧
i

(xi = αi)

)

and observe that this formula has size O(n2n).

It is possible to improve this bound to compute any boolean function by circuits of size
(1 + o(1))2n/n. The next result will show that the improved bound is tight.

Theorem 2 For every n, there exists a function f : {0, 1}n → {0, 1} with sizeB2(f) ≥ (1 −
o(1))2n/n, where B2 is the basis consisting of all binary boolean gates.

Proof: The proof of this theorem is a counting argument. The number of boolean functions on
n inputs is 22n

. We can also bound the number of circuits of size S over B2:

# circuits of size S ≤ (S2)S · |B2|S · Sn · S ·
1
S!

The first term comes from choosing the inputs to each gate, the second is the number of possible
operations for each gate, the third and fourth are the number of choices for the input and output
nodes, and the final term is because the indexing of the gates in the circuit is arbitrary, so we
divide by S! to avoid over-counting isomorphic circuit diagrams. Continuing our calculation, and
choosing S = (1− ε)2n/n we get

# circuits of size S ≤ 2S logS+O(S+n logS) ≤ 2(1−ε)2n+O(2n/n) � 22n
,

even for ε = c/n for a sufficiently large constant c.

Examining the proof further, we can actually conclude that almost every boolean function requires
exponential-sized circuits, but we do not know any such function in NP. In fact, the best known
lower bounds for circuit complexity of functions in NP is cn+ o(n) where c = 5 or 6 depending on
whether you count the inputs. (Our definition does count the input nodes in the size.)
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2 Circuit Depth Bounds

Circuit depth is naturally related to the complexity of parallel computation, and is also interesting
for complexity theory because we know non-trivial lower bounds for bounded-depth circuits.

We can define depth properties analogously to size properties. Specifically we write:

• depth(C) = length of the longest path from any input to any output.

• depthB(f) = the minimum depth of any circuit over basis B that computes f .

• DEPTHB(d(n)) = the class of functions computable by circuits of depth O(d(n)).

For circuits with fan-in 2 we have depth(C) ≤ size(C) ≤ 2depth(C)+1 and either of these inequalities
can be tight. For instance a circuit with one computation path satisfies depth(C) = size(C) and a
balanced tree satisfies size(C) = 2depth(C)+1− 1. As a result, we can get a corollary to Theorem 2
for depth.

Corollary 3 For every n, there exists a function f : {0, 1}n → {0, 1} such that depthB2(f) ≥ n−
log n−O(1). Every function can be computed in depth n+log n+O(1) (via the DNF representation).

3 Boolean Formulas

Definition 4 A boolean formula is a boolean circuit where every gate has fan-out 1 and inputs can
be copied multiple times.

We can define fsize(C) and fsize(f) for boolean formulas analogously to size(C) and size(f) for
circuits. Since we can’t “reuse” outputs in a boolean formula the way we can in a boolean circuit,
we can get a tighter relationship between size and depth:

Theorem 5 For every f : {0, 1}n → {0, 1} over basis B2

1. fsize(f) ≤ 2depth(f)+1

2. depth(f) ≤ O(log fsize(f)) +O(1)

Proof: For 1, given a boolean circuit, traverse the tree making copies of any subtree that gets
reused. This transformation will result in a boolean formula of the same depth, so we can use the
same bound we had for circuits.

For 2, given a formula F , we want to construct an equivalent circuit of small depth. Let d(S)
be the smallest depth that will suffice for every formula of size S.

Claim 6 d(S) ≤ d(2S/3) +O(1)

Proof: [Claim 6] First we observe that given any boolean formula of size S, we can always find
a gate v such that the subformula rooted at v has size in the interval [S/3, 2S/3 + 1]. To see this,
start at the root and move to the child rooting the larger subtree until we reach a subtree whose
size is in the interval [S/3, 2S/3+1]. If the size of the subformula we choose is m, then the previous
subformula is of size at most 2m+ 1, so we can’t skip over the entire interval [S/3, 2S/3 + 1].
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Consider a gate v and the subformula Fv. Now consider the formulas F |v=0 and F |v=1. Then
we have

F = (Fv ∧ F |v=1) ∨ (¬Fv ∧ F |v=0)

with all three subformulas of size at most 2S/3+1 and the depth of the formula F is the maximum
over the three subformulas plus a constant number of additional layers.

Part 2 follows directly from the recursion in claim 6.

4 Simultaneous Size and Depth Bounds

We can define restricted classes of circuits with simultaneously bounded size and depth:

• NCk = {Languages decidable by circuits of size poly(n) and depth O(logk n)}

• NC =
⋃
k NCk

• ACk = {Langauges . . . circuits of size poly(n) and depth O(logk n) with unbounded fan-in ∧,∨ gates}

• AC =
⋃
k ACk

In general people are not consistent about uniform vs. non-uniform AC and NC classes, so we will
try to be explicit about it. Uniform NC was a popular theoretical model for parallel computation
in the 80s, since it consists of the problems solvable on parallel computers in polylogarithmic time,
using polynomially many processors (with either a shared memory or an efficient communication
network). Now that there is a renewed interest in parallel computation, due to the advent of
multicore machines, there may be a renewed interest in NC.

We have the following relationship between NCk and ACk classes.

Proposition 7 NCk ⊆ ACk ⊆ NCk+1.

Proof: The first inclusion is by definition. The second inclusion is because, given an ACk circuit
on n inputs, we can replace an ∧ or ∨ gate of unbounded fan-in with a binary tree of gates of
constant fan-in, with depth O(log n).

The above inclusions hold for both uniform and non-uniform classes.
Let’s look at the low levels of this hierarchy:

• NC0 = functions that depend on only a constant number of input bits. Not very interesting
for languages, but it turns out to be quite rich functions with many output bits. Indeed,
a recent breakthrough (Applebaum-Ishai-Kushilevitz 2004) showed that many cryptographic
primitives can be realized in NC0.

• AC0 = can compute functions that depend nontrivially on all input bits. However, it is
known that Parity and Majority are not in (even nonuniform) AC0. These beautiful
results are close to the frontier of circuit lower bounds.

• NC1 = DEPTH(O(log n)) = {poly − sizedformulas}. Very rich. We don’t know how to
prove that NP 6= NC1. The best known formula-size lower bound for an explicit function
is roughly n2 (note that this is much better than the linear lower bounds known for circuit
size).
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We can also relate NC and AC to space-bounded computation in the following way

Theorem 8 1. uniform NC1 ⊆ L

2. NL ⊆ uniform AC1 ⊆ uniform NC2

Proof: For part 2 we state without proof that it is sufficient to show that PATH ∈ uniform AC1.
(A bit more work is needed to complete the proof, since it is not obvious that AC1 is closed under
logspace reductions.)

To demonstrate that we can solve PATH with uniform AC1 circuits, consider solving connec-
tivity by computing the n-th boolean power of the adjacency matrix, An. We can compute any
entry of A ·B using an AC0 circuit and we can compute an entry of An using O(log n) applications
of that AC0 circuit, which would give us an AC1 circuit.

For part 1 we can demonstrate the following procedure: On input x of length n, we can “con-
struct” in logspace a circuit Cn of depth O(log n), where as usual, instead of actually constructing
the circuit, we reproduce the part of the circuit we need every time, to avoid using too much space.
Now we hardwire the input x into Cn(x) to get a circuit with no variables. Then we convert this
to a polynomial-sized formula in prefix notation (F = opF1F2). Finally we recursively evaluate the
formula F using O(1) space per level of recursion and O(log n) depth, so O(log n) total space.
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