
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 11

March 5, 2010 Scribe: Michael Jemison

1 Circuit Complexity Diagram

2 Randomized Computation

Now we’ll study the complexity theory of randomized algorithms — algorithms that may make
random choices or ”toss coins.” There are many equivalent formalizations of this idea:

1. Coin-tossing Oracle: When the algorithm goes into a special coin-tossing state, it received a
randomly chosen bit (0 or 1 with equal probability) on its current tape location.

2. Randomized Transition Function: The algorithm has two transition functions δ0 and δ1,
and one of the two randomly chosen (with equal probability) and applied at each step of the
computation.

3. Random Tape: The algorithm has a special tape that is filled with an infinite sequence of
random bits at the beginning of the computation. However, for space-bounded computations, we

1

must be careful to restrict the algorithm to have one-way access to the special random tape (as we
do not want to give it free storage of its random bits).

3 Polynomial Identity Testing

We begin with an example of a randomized algorithm, one that easily and efficiently solves a
problem for which we do not know any efficient deterministic algorithms.

An arithmetic formula is a like a boolean formula but the operations are addition and multi-
plication with constants given over Z. An example of an arithmetic formula F (x1, x2, x3, x4) in 4
variables is F (x1, x2, x3, x4) = (4x1 − 2x2) + (x3)(x1) + (x1 + x2)(x3 + x4).

There is a commonly occurring problem of deciding when 2 given arithmetic formulas P and
Q compute the same polynomial.1 If we take R = P − Q, this problem reduces to the problem
of determining if the arithmetic formula R computes the zero polynomial. This computational
problem can be described as a language:

AFITZ = {R : R is an arithmetic formula over Z that computes the zero polynomial}.

There are no known sub-exponential time deterministic algorithms for AFITZ. However, there
is a polynomial-time probabilistic algorithm:

Randomized Algorithm for AFITZ : On input F (x1, ..., xn):
1. Pick α1, ..., αn ∈ R uniformly at random from [1,K] where K will be determined later.
2. Evaluate F (α1, ..., αn). If F (α1, ..., αn) = 0 accept, else reject.

Analysis of the Algorithm: If F is indeed identical to the zero function, then the algorithm
will always reject. If F is not the zero function, then the algorithm will accept with probability
with probability ≤ 1/2 provided that K is chosen correctly. We may reduce the probability of a
false positive to ≤ 2−l with l repetitions of the algorithm.

The fact that we can choose K follows from:

Lemma 1 (Schwartz-Zippel Lemma) Let p(x1, ..., xm) be a nonzero polynomial of (total) de-
gree2 at most d over a field F.3 If a1, a2, ..., am are randomly chosen with replacement from S ⊆ F,
then Pr[p(a1, ..., am) = 0] ≤ d/|S|.

1We say two polynomials are equal if they have the same coefficient for every monomial (after expanding and
collecting like terms). Over infinite fields or domains (like Z), this is is equivalent to saying that P and Q compute the
same function. (This follows from the Schwartz–Zippel Lemma below.) But over finite fields, two distinct polynomials
may compute the same function; e.g. x2 and x compute the same function over Z2 ({0, 1} with arithmetic modulo
2).

2The (total) degree of a monomial xe1
1 xe2

2 ...xem
m is equal to e1 + ... + em. The (total) degree of a polynomial is the

largest (total) degree of its monomials.
3A field is a set with two operations + and × satisfying several familiar properties that we won’t list here,

but notably requiring that all nonzero elements have multiplicative inverses. Examples include R, Q, C, and Zp

({0,1,. . . ,p-1} with arithmetic modulo a prime p). Z is not a field, but we can apply the Schwartz– Zippel lemma to
it because it is contained in the field Q. In contrast, Zn for composite n is not a field, nor is it contained in any field.

2

Proof: The proof proceeds by induction. The case m = 1 is clear from the fact that any non-zero
polynomial univariate of degree d (over any field) has at most d roots. Suppose the assertion holds
for m = n − 1. We may extend the assertion to m=n by writing the polynomial p(x1, ..., xn) as a
univariate polynomial in x1 with coefficients that are polynomials in x2, ..., xn. So we would write
p(x) =

∑
i x

i
1pi(x2, ..., xn). The full details of the proof are given in Arora Barak Appendix A.

The following result will be useful:

Theorem 2 If F (x1, ..., xn) is an arithmetic formula, then deg(F) ≤ |F |, where |F | is the size of
the formula F (i.e. the number of nodes when F is written as a tree).

Proof: The proof again proceeds by induction. We induct on |F |. Suppose that |F | = 1. Then
F = xi or F = c ∈ F for some field F. Now suppose that the cases for |F | ≤ n − 1 have all been
proven. Now consider the case |F | = n. We have that F = G+H or that F = G ∗H for |G| < n
and |H| < n. In either case, we have

deg(F) ≤ deg(G) + deg(H)
≤ |G|+ |H|
≤ |F |.

Where the second inequality follows from the inductive hypothesis.

Combining these two results we see that we may choose K = 2|F |. So in summary, if F 6= 0,
the algorithm will accept with probability ≤ 1

2 for K = 2|F |.

A variant of the above algorithm also works for arithmetics circuits (not just formulas). One
issue is that the degree of the polynomial computed by a given circuit C can be exponential in
the size of |C|. This requires that we take K to be exponentially large (e.g. K = 2|C|+1) to
apply the Schwartz–Zippel Lemma. This is not a problem, as the numbers α1, . . . , αn ∈ {1, . . . ,K}
have binary representations that are polynomially long. However, a bigger problem is that the the
intermediate and final values of F (α1, . . . , αn) can have exponentially large bitlength. (A similar
proof as the above shows that this does not happen with formulas.) This can be solved by doing
the entire computation modulo a random prime number of polynomial bitlength; see Arora–Barak
for details.

4 Probabilistic Language Classes

The main complexity class associated with efficient randomized algorithms is the following:

Definition 3 A language L ∈ BPP (“bounded-error probabilistic polynomial time”) if there is a
probabilistic poly-time algorithm A (i.e. A always halts in poly-time) such that x ∈ L⇒ Pr[A(x) =
1] ≥ 2

3 and x /∈ L⇒ Pr[A(x) = 1] ≤ 1
3 .

Sometimes it is useful to focus on algorithms that have one-sided error:

3

Definition 4 The definition for RP (randomized polynomial time) is similar however we have the
differences that L ∈ RP if x ∈ L⇒ Pr[A(x) = 1] ≥ 1

2 and x /∈ L⇒ Pr[A(x) = 1] = 0.
As usual, co-RP is defined to consists of the complements of languages in RP. Equivalently,

L ∈ co-RP if there is a probabilistic poly-time A such that x ∈ L ⇒ Pr[A(x) = 1] = 1 and
x /∈ L⇒ Pr[A(x) = 1] ≤ 1

2 .

It follows from the algorithm of the previous section that:

Theorem 5 AFITZ ∈ co-RP.

For RP (co-RP) we can reduce the error to 2−k by doing k repetitions and accepting if at least
one (all) of the repetitions accept.

Theorem 6 If we repeat a BPP algorithm l = poly(n) times and rule by majority vote, then the
error probability will be at 2−Ω(l), where the hidden constant depends on the initial constant gap in
the acceptance probability of the BPP algorithm on yes and no instances.

Proof: We use the Chernoff Bound: Let X1, ..., Xl be independent [0, 1]-valued random
variables, X = 1

lΣiXi their average, and µ = E[X] the expectation of X. Then for every ε > 0,

Pr[|X − µ| ≥ ε] ≤ 2−Ω(ε2l).

To apply this to the BPP error reduction we define Xi = 1 if the algorithm is correct in the
i’th repetition (on a fixed input) and Xi = 0 otherwise. Then

E[Xi] ≥
2
3
⇒ µ ≥ 2

3

Pr[X ≤ 1/2] ≤ Pr[|X − µ| ≥ 1
6

] = 2−Ω(1
6

2
l) = 2−Ω(l)

Notice that, in general, the rate at which the error decreases depends quadratically on the (half
of) the gap between the algorithm’s acceptance probability on inputs in the language and inputs
not in the language (which is 1/6 in the standard definition of BPP). Indeed, this error reduction
does not work if we do not require this gap to be at least 1/poly(n). In particular, it does not work
for the following class:

Definition 7 A language L ∈ PP if there is a probabilistic poly-time algorithm A such that x ∈
L⇒ Pr[A(x) = 1] > 1

2 and x /∈ L⇒ Pr[A(x) = 1] ≤ 1
2 .

Even though PP stands for “probabilistic polynomial time,” it is not a reasonable model for
randomized algorithms, as gap in acceptance probability between inputs in the language and not
in the language can be exponentially small.

A similar phenomenon occurs for one-sided error. If we eliminate the gap for RP and just
require that x ∈ L ⇒ Pr[A(x) = 1] > 0, then we obtain the class NP — with the randomization
being better thought of as nondeterminism.

4

Definition 8 ZPP is the set of languages decidable by probabilistic algorithms that never err but
run in expected poly-time, i.e. there is a polynomial p, such that for all x, we have E[Time(A(x))] ≤
p(|x|).

Fact: ZPP = RP ∩ co-RP.

We know the following about probabilistic complexity classes:

Next time: BPP ⊆ Σp
2 ∩Πp

2 .
Examples of Problems where randomized algorithms are exponentially faster than known de-

terministic ones:
1. Polynomial Identity Testing (as above).
1. Approximate counting problems such as the number of perfect matchings in a graph.
2. Estimating partition functions in statistical physics.
3. Extracting square roots mod a prime.
Thus, randomization appears to be very powerful. However, there is also strong evidence that
actually every randomized algorithm can be made deterministic with only a polynomial slowdown:

Theorem 9 (Impagliazzo–Wigderson) If SAT (or any problem in DTIME(2O(n))) requires
exponentially large circuits, i.e. 2Ω(n), then BPP = P.

We will not cover this result in CS221, but if you are interested, see the later chapters of Arora–
Barak or take CS225 (“Pseudorandomness”, to be offered in Spring 2011).

5

