
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 13

March 10, 2010 Scribe: James Williamson

1 Randomized Reductions

We consider Unique SAT, a promise problem

USATY = {ϕ |ϕ has exactly one satisfying assignment }
USATN = {ϕ |ϕ is unsatisfiable }

We can easily reduce USAT to SAT by mapping any formula to itself. Any formula that is a
yes instance is in SAT and any no instance is not in SAT.

We now show that USAT reduces to SAT via a randomized reduction. Therefore if we are
allowed randomness, USAT is no easier than SAT.

Theorem 1 (Valiant-Vazirani) SAT ≤r USAT, where ≤r denotes a randomized Karp reduction.
More specifically: ∃ a PPT algorithm M such that

ϕ ∈ SAT⇒ Pr [M(ϕ) ∈ USATY] ≥ 1/8n

ϕ /∈ SAT⇒ Pr [M(ϕ) ∈ USATN] = 1

n is the number of variables in φ.

Corollary 2 USAT ∈ prBPP ⇐⇒ SAT ∈ BPP

Proof: The idea is to use hashing to randomly remove satisfying assignments.

Definition 3 H = {h : {0, 1}n → {0, 1}m} is a pairwise independent family of hash functions if
∀x1 6= x2 ∈ {0, 1}n, y1, y2 ∈ {0, 1}m

Pr
h

R←H
[h(x1) = y1 ∧ h(x2) = y2] = 1/22m

.

While a completely random hash function from {0, 1}n to {0, 1}m would require exponentially
many random bits to generate and describe, it turns out that pairwise independent families can be
generated using polynomially many random bits and can be evaluated efficiently:

Lemma 4 For all n,m ∈ N, Hn,m = {hA,b : A ∈ {0, 1}n×m, b ∈ {0, 1}m} is a pairwise independent
family, where hA,b(x) = Ax+ b, and all arithmetic is modulo 2.

1

To do the reduction from SAT to USAT: choose m R←{2, . . . , n+1}, A R←{0, 1}n×m, b R←{0, 1}m
(all uniformly at random). Then the mapping operates as follows:

ϕ(x) 7→ ϕ′(x) = ϕ(x) ∧ (hA,b(x) = 0m)

If x /∈ SAT then ϕ(x) = 0⇒ ϕ′(x) = 0. Therefore the reduced formula is in the no instance of
USAT with probability 1.

If x ∈ SAT we show the following:

Claim 5 If 2m−2 ≤
∣∣ϕ−1(1)

∣∣ ≤ 2m−1 then Pr [ϕ′ ∈ USATY] ≥ 1/8

Proof of claim:

Pr
[
ϕ′ ∈ USATY

]
=

∑
x∈ϕ−1(1)

Pr [x is a unique assignment to ϕ′]

≥
∑

x∈ϕ−1(1)

Pr [h(x) = 0]−
∑

y∈ϕ−1(1)\{x}

Pr [h(y) = h(x) = 0]

≥
∣∣ϕ−1(1)

∣∣ (1/2m − ∣∣ϕ−1(1)
∣∣ · 1/22m

)
=

∣∣ϕ−1(1)
∣∣

2m
·

(
1−

∣∣ϕ−1(1)
∣∣

2m

)
≥ 1/4 · (1/2) = 1/8

�

The result follows since m is chosen so that the inequality above holds. The bound on the
probability follows easily.

2 Counting Complexity

The goal of this topic is to count the number of witnesses to problems in NP.

Definition 6 f : {0, 1}∗ → N is in #P if ∃ a polynomial p and a polynomial-time algorithm M
such that for all x,

f(x) = #{y ∈ {0, 1}p(|x|) |M(x, y) = 1}.

2.1 Examples and Motivations

• #SAT.

M(ϕ, y) =

{
1 ϕ(y) = 1
0 ϕ(y) = 0

with f(ϕ) =
∣∣ϕ−1(1)

∣∣. It is clearly as hard as deciding SAT.

• Examples of when there are in fact nice closed form formulas:

2

– Matrix-Tree Theorem: The number of spanning trees of a graph G with adjacency matrix
A is given by det(L(G)) where L(G) is the graph Laplacian defined by

L(G) =

d1 0
. . .

0 dn

−A
and di is the degree of vertex i.

– The Fisher-Kestelyn-Tempotley Algorithm: Let G be a planar graph. Then using the
embedding into the plane we can construct an efficiently computable signed, skew-
symmetric version of the adjacency matrix M such that the number of pefect matchings
of G is given by

√
det(M).

• Examples of natural problems from various disciplines that give rise to harder counting prob-
lems.

– Networking: Given a connected graph G where each edge fails with probability p what
is probability that G remains connected? For p = 1/2, then is given by

spanning subgraphs of G
2|E|

So we need to be able to count the number of spanning subgraphs, which turns out to
be #P-complete. (As a note this is solvable for any given value of p in polynomial time
in the presence of an oracle for #P.)

– Statistical Mechanics: Consider a monomer, dimer system represented by a graph G.
Each pair adjacent of vertices can be occupied by a dimer and all other vertices can be
represented by a monomer. At equilibrium this system follows the Gibbs distribution
where the probability of a configuration σ is given by

Pr [σ] =
µ#dimers

Z(G,µ)
,

where µ is a parameter (governed e.g. by the temperature of the system). By necessity

Z(G,µ) =
∑
sigma

µ#dimers(σ)

for the formula to make sense. This function is hard to compute. If we let µ = 1 then
Z(G, 1) is the number of matchings in G, another natural problem that #P-complete.

– Artificial Intelligence: Consider a Bayes Net with n hidden variables each of which is
0 with probability 1/2 independently. We want to guess the n hidden variables given
values to m observed variables.
One possible question we could ask is Pr [x1 = 1 | y1 = · · · = ym = 1]. We know how the
network is constructed so we can write y1 = φ1(x1, . . . , xn) and φ = φ1 ∧ · · · ∧φm. Then
this probability becomes

satisfying assignments to φ|x1=1

satisfying assignments to φ

Computing this quantity can be shown to be computationally equivalent to #SAT .

3

2.2 #P Complete Problems

1. #Circuit Satisfiability: We can do the following reduction from any counting problem
with verifier M : x 7→ Cx(·) = M(x, ·). The number of satisfying assignments to Cx exactly
equals the the number of solutions to the original counting problem on instance x. Such
reductions are called parsimonious. That is we have f ≤ g via a reduction R such that for
all x, g(R(x)) = f(x).

2. #3SAT, the standard reduction from Circuit Satisfiability to 3SAT is parsimonious
since the added gates have values determined by the input values.

The counting analogues of all known natural NP complete problems are #P complete under a
reduction that takes the form f(x) = S(g(R(x))) where R,S are polynomial time computable and
S is usually multiplication by a constant factor (also referred to as parsimonious reductions).

However, there are a number of #P-completeness results that seem to require non-parsimonious
reductions, or even Cook reductions. For instance #DNF: The reduction runs as follows: For φ in
3CNF take φ 7→ ¬φ under R. Now for g(φ) = k we know that f(φ) must be equal to 2n − k where
n is the number of variables in φ.

This not only shows an example where S is not a constant factor, but also demonstrates that
there are problems that are complete for #P where the underlying decision problem is easy (as
satisfiability of DNF formulas is easy to test).

4

