
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 15

March 24, 2010 Scribe: Mike Ruberry

1 Recap and Introduction

Recall the following definitions for a function f : {0, 1}∗ → R≥0, and α > 1 :

α-approximation algorithm for f : ∀x f(x) ≤ A(x) ≤ α · f(x)

randomized α-approximation Pr[f(x) ≤ A(x) ≤ α · f(x)] ≥ 2
3

approximation scheme for all ε > 0, we have ∀x f(x) ≤ A(x, ε) ≤ (1 + ε)f(x), and A runs in
time pε(|x|) for a polynomial pε (that can have an arbitrarily bad dependence on ε

fully polynomial approximation scheme the above A(x, ε) runs in time poly(|x|, 1/ε); that is,
time polynomial in the input and the inverse of the approximation factor, ε

One of the main points of today’s lecture is that approximate counting tends to be much easier
than exact counting.

2 Relation to promise problems

Having an α-approximation algorithm A(x) is equivalent to having an algorithm which decides the
following promise problem:

Gapαf
YES = {(x, t) : f(x) ≥ t}
NO = {(x, t) : f(x) < t/α}

or alternatively:

Gapαf
YES = {(x, t) : f(x) ≥ αt}
NO = {(x, t) : f(x) < t}

What’s important is the gap between inequalities which permits us to disambiguate.

A subtle but important point is the distinction between Gap1+ε #CIRCUIT-SAT and ε−APPROX-
CIRCUIT-ACCEPT-PROBABILITY. The latter problem has a natural PrBPP-complete ana-
logue:

1

YES = {(c, p) : Pr[C(x) = 1] ≥ p+ ε}
NO = {(c, p) : Pr[C(x) = 1] ≤ p}

This latter approximation is within ±ε·2n, where n is the number of inputs to the circuit, C, whereas
the former is within ±ε · k, where k is the number of satisfying assignments. On instances with
few satisfying assingments this latter approximation must be increasingly precise and in particular
can disambiguate between zero and one satisfying assignments, allowing it to solve problems like
circuit satisfiability and thus making it NP-hard.

From this discussion we conclude approximate counting is at least as hard as decision.

3 Examples

There are many #P-complete problems with fully polynomial randomized approximation schemes:

#DNF while for exact counting DNF is the same as CNF, approximate counting is easier with
DNF

#Perfect Matchings (in bipartite graphs), and more generally the nonnegative Permanent.

and more from statistical physics

These often work by using Markov chain Monte Carlo is used to generate solutions (almost) uni-
formly at random (which is broadly equivalent to approximate counting).

Uniform Sampling let M be a polynomial time verifier with solution length p(n). A fully polyno-
mial almost-uniform sampler for M is a probabilistic algorithm, S, such that ∀x ∈ {0, 1}∗, ε >
0, the random variable S(x, ε) is ε-“close” to the uniform distribution on the set of solutions
for x, namely {y ∈ {0, 1}p(|x|) : M(x, y) = 1}, and A(x, ε) runs in time poly(|x|, 1/ε).

Closeness of random variables Two random variables X,Y are “ε-close” if for every set T of
possible outcomes |Pr[X ∈ T]− Pr[Y ∈ T‖ ≤ ε.

Our description will be robust to many notions of “distance,” however.

4 Relation of almost uniform samplers and approximate counting

Theorem 1 For “downward self-reducible” verifiers (defined only by example); #M (counting so-
lutions to M) has a fully polynomial randomized approximation scheme if and only if M has a fully
polynomial almost uniform sampler.

Proof: We will prove that a having a sampler provides an approximation counter for the number
of matchings (not just perfect matchings) in a graph. The other half of the proof is left as an
exercise for problem set 4.

Assume we have a fully polynomial sampler, S. Iur approximating counting algorithm A(G, ε)
works as follows:

2

1. if G has no edges, output 1; otherwise let e = (u, v) be an edge in G

2. run sampler S(G, δ), O(n/δ2) times to estimate p̂, the fraction p of matchinges in G that
contain e (w.p. 1− 2−n, |p̂− p| ≤ 2δ by a Chernoff bound. The first δ is from the bound, the
second from the sampler.)

3. if p̂ < 1/2, recursively estimate the number of matchings in G \ e (which exactly equals the
number of matchings in G without edge e) and output (A(G \ e, δ)/(1 − p̂). The numerator
represents the recursion, while the denominator is the ratio to the total number of matchings.

4. alternatively, if p̂ > 1/2 then we recursively estimate the number of matchings G \ {u, v}
(both vertices and all connected edges removed from G), which is exactly equals the number
of matchings where (u, v) are matched using e. We then output A(G \ {u, v}, δ)/p̂.

The two cases permit a better approximation: if p is close to zero then we would have a bad relative
approximation to p, but an excellent approximation to 1− p.
We now will show by induction that A(G, ε) ∈ (1±O(δ))#edges in G ·#MATCH(G). Let δ = ε

cm ,
which will give relative error ≤ 1 + ε.

We now consider the 4th point above:

p ≤ p̂+ 2δ ≤ p̂ · (1 + 4δ) where (p̂ > 1
2)

p ≥ p̂− 2δ ≥ p̂(1− 2δ)

and by induction A(G\{u,v},ε)
p̂ = (1±O(δ))m−1·#matchings(G\{u,v})

(1±O(δ))·p = (1±O(δ))m ·#matchings(G).

From the example, we can see that “downward self reducible” means that we can fix a constant
amount of the witness (e.g. whether edge e is present or not in the matching) and obtain a strictly
smaller instance of the same problem (e.g. G \ e or G \ {u, v}).

5 Decision and counting

We know that approximate counting is at least as hard as decision—are there cases where decision
is easy and approximate counting is hard? Yes!

Theorem 2 Approximate # CYCLES in a graph is NP-hard.

Proof: Deciding whether a graph has a cycle is in P, of course. We show hardness by reduction
from Hamiltonian Cycle: For every constant α > 0, Hamiltonian Cycle≤l GAPα CYCLES.
We want to map our graph, G to a new graph, (G′, t) where if G has a Hamiltonian cycle then the
number of cycles in G′ ≥ t. Alternatively, if G does not have a Hamiltonian cycle then the number
of cycles in G′ is < t/α.

We’ll show this for directed graphs, but the same proof applies in the undirected case, too. Intu-
itively, we make big cycles give us many cycles, small cycles fewer. For an edge between (u, v) we
construct a series of l “diamonds” such that there are 2l ways to go from u to v now. If G had a
Hamiltonian cycle then G′ has ≥ 2l·n, while if G does not have a Hamiltonian cycle then G′ has
fewer than 2l(n−1)n! We must be careful to pick l = n2 to dominate the n! factor.

3

5.1 How hard can approximate counting be?

Approximate counting (and uniform sampling) can always be done in probabilistic polynomial time
with an NP oracle: ∀f ∈ # P, Gapαf ∈ BPPNP ⊆ Σp

3 ∩Πp
3 . We’ll see this in a few weeks.

This is in sharp contrast to exact counting, which is more powerful than the entire PH by Toda’s
Theorem.

6 Next time: Average case complexity

Goal: understand hardness of problems on “random” inputs.

Let f : {0, 1}∗ → {0, 1}∗, let Dn be a distribution on {0, 1}n for every n, and δ : N→ [0, 1]. Then
we say that f is δ-hard on D = {Dn} if ∀ PPT A, Pr

x←Dn,coins of A
[A(x) 6= f(x)] > δ(n).

That is, every efficient algorithm must err with probability greater than δ(n) on random inputs
chosen according e.g. the expected run time under D. People study other ways to model average-
case hardness, such as considering algorithms A that are always correct but considering their
expected running time under Dn, but we will focus on this basic definition for our brief study of
the subject.

6.1 Motivations

• model “real life” instances better than worst-case complexity? (challenge is to find distribu-
tions that are a good model)

• cryptography, and some other areas like derandomization (here we want to generate hard
instances in order to use their hardness for useful things like encrypting data or producing
“pseudorandom” bits”)

6.2 Examples of problems conjectured to be average-case hard

• f(x) = prime factorization of x, where Dn is the product of two random n/2-bit primes

• f = SAT, Dn is a random ∆n 3-clauses, where n is the number of variables and ∆ is a fixed
constant (the satisfiability threshold).

4

