
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 18

April 5, 2010 Scribe: David Wu

1 Characterizing IP

Recall that in an interactive proof for a language L we have a computationally unbounded prover
P and a verifier V with the properties:

• Efficiency: V runs in time poly(|x|)

• Completeness: x ∈ L→ Pr[V accepts in (P, V)(x)] ≥ 2/3

• Soundness: x 6∈ L→ ∀P ∗, Pr[V accepts in (P ∗, V)(x)] ≤ 1/3

Last time we showed that P#P ⊆ IP. In fact:

Theorem 1 IP = PSPACE

Proof: (sketch)
⊆ : Homework, PS5
⊇ : The proof is similar to P#P ⊆ IP, using similar arithmetic techniques to transform the problem
into one of polynomials over finite fields, except we use TQBF instead of #SAT. In contrast to the
summation in #SAT, handling quantifiers in TQBF causes the degree of polynomial to increase
exponentially, so a clever “degree reduction” trick is needed to keep it small.

1.1 Nice Properties of #SAT and TQBF Proof Systems

1. The prover for both can be implemented in PL - there is no need for anything stronger. This
does not appear to be true for all languages with interactive proofs.

2. Perfect completeness - In both systems if x ∈ L, the verifier accepts always. This implies that
every language in IP has a perfectly complete interactive proof. (Since IP ⊆ PSPACE, every
language L ∈ IP reduces to TQBF, so we can obtain a new, perfectly complete interactive
proof that x ∈ L by reducing x to an instance of TQBF and applying the protocol for
TQBF.)

3. Public coins - The verifier in either case needs no hidden randomness. This implies that
every language in IP has a public-coin protocol, including graph nonisomorphism. (Although
public coins may come at the cost of efficiency). Note that the prover still cannot see future
coins of the verifier.

1

2 Consequences for Program Checking

Definition 2
A program checker (a.ka. instance checker) for f : {0, 1}∗ → {0, 1}∗ is a PPT M such that for all

inputs x:

1. Completeness: Pr[Mf (x) accepts] ≥ 2/3 (or = 1 for perfect completeness)

2. ∀g such that g(x) 6= f(x), Pr[Mg(x) accepts] ≤ 1/3

Idea: someone claims that a program g computes the the function f . We want to use g to compute
f on an input x, but we are concerned that g may be incorrect (either due to bugs or to being
malware). By running Mg(x) we can be confident that we won’t accept an incorrect value g(x).

Proposition 3
If L and L have interactive proof systems where the prover can be implemented in PL (or equivalently
PL), then L has a program checker.

Proof:
Given an oracle L∗ to be checked, our program checker is ML∗(x) :

• Query L∗(x) and let y ∈ {0, 1} be the result.

• If y = 1 simulate the IP for L to verify that x ∈ L.

• If y = 0 simulate the IP for L to verify that x 6∈ L

• Accept/reject accordingly

As a result, Graph Isomorphism, #SAT, TQBF all have program checkers because of this. Note
that the above does not show that all of IP = PSPACE has program checkers, because we require
that the prover be implementable with oracle access to L, rather than to a PSPACE-complete
problem. In fact, it is an open problem whether SAT has a program checker, and the best known
interactive proof for coNP still requires a #P oracle!

3 Arthur–Merlin Games

Definition 4
A public-coin interactive proof is an interactive proof (P, V) where each message from V consists
of uniformly random coins and at the end V accepts by a deterministic poly-time function of x and
the transcript of communications between P and V .
This is also sometimes known as an Arthur-Merlin protocol, where we imagine Merlin, an all-
powerful prover, trying to convince Arthur, the limited verifier, of something.

2

Definition 5
For a function k : N→ N...
IP[k(n)] = {L : L has interactive proofs with ≤ k(n) messages}
IP =

⋃
c IP[nc]

AM[k(n)] = {L : L has public-coin interactive proofs with ≤ k(n) messages and Arthur speaks first}
MA[k(n)] = {L : L has public-coin interactive proofs with ≤ k(n) messages and Merlin speaks first}
AM = AM[2]
MA = MA[2]

We present the following facts:

• IP[poly(n)] = AM[poly(n)] because only public-coins were needed in IP = PSPACE.

• ∀k(n) ≥ 2, IP[k(n)] = AM[k(n)]. In particular, GNI ∈ AM[2]. Loosely, “public coins =
private coins”. (We’ll prove the case k(n) = 2 next time.)

• ∀k(n) ≥ 2, MA[k(n)] ⊆ AM[k(n)]. (PS 5)

• ∀k(n) ≥ 2, AM[k(n)] = AM[k(n)] with perfect completeness. (Possibly to be done in
section.)

• ∀k(n) ≥ 2, MA[k(n)] = MA[k(n)] with perfect completeness. (Possibly to be done in
section.)

• ∀k(n) ≥ 2, ∀c constant, AM[ck(n)] = AM[k(n)]. In particular, AM[c] = AM[2]. (PS 5)

3.1 Relationships of AM and MA to NP

In MA, we have M sending m, then A tossing coins r, and then a deterministic verifier A(x,m, r).
By completeness and soundness:
x ∈ L→ Prr[∃m,A(x, r,m) = 1] ≥ 2/3
x 6∈ L→ Prr[∃m,A(x, r,m) = 1] ≤ 1/3
This is exactly NP except with a BPP verifier, instead of a P verifier!

In AM, we have A sending coins r, then M sending M , and then a deterministic verifier A(x,m, r).
By completeness and soundness:
x ∈ L→ Prr[∃mr, A(x, r,m) = 1] ≥ 2/3
x 6∈ L→ Prr[∃mr, A(x, r,m) = 1] ≤ 1/3
This is a randomized version of NP, where we have some randomness at the beginning, and then
afterwards, check an NP-like condition that depends on the randomness.

On PS5 you will show MA ⊆ AM, and thus we have inclusions:

3

4 Approximate Counting ∈ AM

Theorem 6
For every f ∈ #P and every constant α > 1 (or even α = 1+1/poly(n)), we have GAPαf ∈ prAM,
where Gapα − f is the promise problem:
yes: {(x, t) : f(x) ≥ t}
no: {(x, t) : f(x) < t/α}

Corollary 7
Approximate counting and almost-uniform sampling are both in BPPNP.

Proof:
We show the theorem true for α = 4. Next time we’ll show how to deduce it for α = 1 + 1/poly(n).

f ∈ #P, so by definition f(x) = |S(x)| for some NP search problem S. We give a prAM protocol
using hashing. Given (x, t):

1. Arthur chooses m ∈ N such that 2m−1 > t ≥ 2m−2, picks pairwise-independent hash h :
{0, 1}p(n) → {0, 1}m and sends h to Merlin.

2. Merlin finds y ∈ S(x) such that h(y) = 0m and sends y.

3. Arthur accepts if h(y) = 0m and y ∈ S(x).

Completeness: If |S(x)| ≥ t ≥ 2m−2 then by the Valiant-Vazirani analysis, with probability ≥ 1/8
there exists some element in S(x) mapping to 0.

Soundness: If |S(x)| < t/α < 2m−1/α = 2m−3 then the probability that there exists some element in
S(x) mapping to 0 is, by union bound, ≤

∑
y∈S(x) Prh[h(y) = 0m] = |S(x)|/2m ≤ 2m−3/2m ≤ 1/16.

4

Since we have a finite gap 1/8 to 1/16, we can amplify as desired, giving us an prAM protocol.

5

