CS 221: Computational Complexity

Prof. Salil Vadhan

Lecture Notes 18

April 5, 2010 Scribe: David Wu

1 Characterizing IP

Recall that in an interactive proof for a language L we have a computationally unbounded prover P and a verifier V with the properties:

• Efficiency: V runs in time poly(|x|)

• Completeness: $x \in L \to \Pr[V \text{ accepts in } (P, V)(x)] \ge 2/3$

• Soundness: $x \notin L \to \forall P^*$, $\Pr[V \text{ accepts in } (P^*, V)(x)] \leq 1/3$

Last time we showed that $\mathbf{P}^{\#\mathbf{P}} \subseteq \mathbf{IP}$. In fact:

Theorem 1 IP = PSPACE

 $\textbf{Proof:} \quad (\text{sketch})$

 \subseteq : Homework, PS5

 \supseteq : The proof is similar to $\mathbf{P}^{\#\mathbf{P}} \subseteq \mathbf{IP}$, using similar arithmetic techniques to transform the problem into one of polynomials over finite fields, except we use TQBF instead of #SAT. In contrast to the summation in #SAT, handling quantifiers in TQBF causes the degree of polynomial to increase exponentially, so a clever "degree reduction" trick is needed to keep it small.

1.1 Nice Properties of #SAT and TQBF Proof Systems

- 1. The prover for both can be implemented in \mathbf{P}^L there is no need for anything stronger. This does not appear to be true for all languages with interactive proofs.
- 2. Perfect completeness In both systems if $x \in L$, the verifier accepts always. This implies that every language in **IP** has a perfectly complete interactive proof. (Since **IP** \subseteq **PSPACE**, every language $L \in \mathbf{IP}$ reduces to TQBF, so we can obtain a new, perfectly complete interactive proof that $x \in L$ by reducing x to an instance of TQBF and applying the protocol for TQBF.)
- 3. Public coins The verifier in either case needs no hidden randomness. This implies that every language in **IP** has a public-coin protocol, including graph nonisomorphism. (Although public coins may come at the cost of efficiency). Note that the prover still cannot see future coins of the verifier.

2 Consequences for Program Checking

Definition 2

A program checker (a.ka. instance checker) for $f: \{0,1\}^* \to \{0,1\}^*$ is a PPT M such that for all inputs x:

- 1. Completeness: $\Pr[M^f(x) \ accepts] \ge 2/3 \ (or = 1 \ for \ perfect \ completeness)$
- 2. $\forall g \text{ such that } g(x) \neq f(x), \Pr[M^g(x) \text{ accepts}] \leq 1/3$

Idea: someone claims that a program g computes the function f. We want to use g to compute f on an input x, but we are concerned that g may be incorrect (either due to bugs or to being malware). By running $M^g(x)$ we can be confident that we won't accept an incorrect value g(x).

Proposition 3

If L and \overline{L} have interactive proof systems where the prover can be implemented in \mathbf{P}^L (or equivalently $\mathbf{P}^{\overline{L}}$), then L has a program checker.

Proof:

Given an oracle L^* to be checked, our program checker is $M^{L^*}(x)$:

- Query $L^*(x)$ and let $y \in \{0,1\}$ be the result.
- If y = 1 simulate the IP for L to verify that $x \in L$.
- If y=0 simulate the IP for \overline{L} to verify that $x \notin L$
- Accept/reject accordingly

As a result, Graph Isomorphism, #SAT, TQBF all have program checkers because of this. Note that the above does not show that all of $\mathbf{IP} = \mathbf{PSPACE}$ has program checkers, because we require that the prover be implementable with oracle access to L, rather than to a \mathbf{PSPACE} -complete problem. In fact, it is an open problem whether SAT has a program checker, and the best known interactive proof for \mathbf{coNP} still requires a $\#\mathbf{P}$ oracle!

3 Arthur–Merlin Games

Definition 4

A public-coin interactive proof is an interactive proof (P, V) where each message from V consists of uniformly random coins and at the end V accepts by a deterministic poly-time function of x and the transcript of communications between P and V.

This is also sometimes known as an Arthur-Merlin protocol, where we imagine Merlin, an all-powerful prover, trying to convince Arthur, the limited verifier, of something.

Definition 5

```
For a function k : \mathbb{N} \to \mathbb{N}...

\mathbf{IP}[k(n)] = \{L : L \text{ has interactive proofs with } \leq k(n) \text{ messages} \}

\mathbf{IP} = \bigcup_{c} \mathbf{IP}[n^{c}]

\mathbf{AM}[k(n)] = \{L : L \text{ has public-coin interactive proofs with } \leq k(n) \text{ messages and Arthur speaks first} \}

\mathbf{MA}[k(n)] = \{L : L \text{ has public-coin interactive proofs with } \leq k(n) \text{ messages and Merlin speaks first} \}

\mathbf{AM} = \mathbf{AM}[2]

\mathbf{MA} = \mathbf{MA}[2]
```

We present the following facts:

- $\mathbf{IP}[\text{poly}(n)] = \mathbf{AM}[\text{poly}(n)]$ because only public-coins were needed in $\mathbf{IP} = \mathbf{PSPACE}$.
- $\forall k(n) \geq 2$, $\mathbf{IP}[k(n)] = \mathbf{AM}[k(n)]$. In particular, $\mathbf{GNI} \in \mathbf{AM}[2]$. Loosely, "public coins = private coins". (We'll prove the case k(n) = 2 next time.)
- $\forall k(n) \ge 2$, $\mathbf{MA}[k(n)] \subseteq \mathbf{AM}[k(n)]$. (PS 5)
- $\forall k(n) \geq 2$, $\mathbf{AM}[k(n)] = \mathbf{AM}[k(n)]$ with perfect completeness. (Possibly to be done in section.)
- $\forall k(n) \geq 2$, $\mathbf{MA}[k(n)] = \mathbf{MA}[k(n)]$ with perfect completeness. (Possibly to be done in section.)
- $\forall k(n) \geq 2, \forall c \text{ constant}, \mathbf{AM}[ck(n)] = \mathbf{AM}[k(n)].$ In particular, $\mathbf{AM}[c] = \mathbf{AM}[2].$ (PS 5)

3.1 Relationships of AM and MA to NP

In \mathbf{MA} , we have M sending m, then A tossing coins r, and then a deterministic verifier A(x, m, r). By completeness and soundness:

```
x \in L \to \Pr_r[\exists m, A(x, r, m) = 1] \ge 2/3
x \notin L \to \Pr_r[\exists m, A(x, r, m) = 1] \le 1/3
```

This is exactly **NP** except with a **BPP** verifier, instead of a **P** verifier!

In **AM**, we have A sending coins r, then M sending M, and then a deterministic verifier A(x, m, r). By completeness and soundness:

```
x \in L \to \Pr_r[\exists m_r, A(x, r, m) = 1] \ge 2/3
x \notin L \to \Pr_r[\exists m_r, A(x, r, m) = 1] \le 1/3
```

This is a randomized version of **NP**, where we have some randomness at the beginning, and then afterwards, check an **NP**-like condition that depends on the randomness.

On PS5 you will show $MA \subseteq AM$, and thus we have inclusions:

4 Approximate Counting \in AM

Theorem 6

For every $f \in \#\mathbf{P}$ and every constant $\alpha > 1$ (or even $\alpha = 1 + 1/\text{poly}(n)$), we have $GAP_{\alpha}f \in \mathbf{prAM}$, where $GAP_{\alpha} - f$ is the promise problem:

yes: $\{(x,t): f(x) \ge t\}$ no: $\{(x,t): f(x) < t/\alpha\}$

Corollary 7

Approximate counting and almost-uniform sampling are both in $\mathbf{BPP^{NP}}$.

Proof:

We show the theorem true for $\alpha = 4$. Next time we'll show how to deduce it for $\alpha = 1 + 1/\text{poly}(n)$. $f \in \#\mathbf{P}$, so by definition f(x) = |S(x)| for some \mathbf{NP} search problem S. We give a \mathbf{prAM} protocol using hashing. Given (x, t):

- 1. Arthur chooses $m \in \mathbb{N}$ such that $2^{m-1} > t \ge 2^{m-2}$, picks pairwise-independent hash $h : \{0,1\}^{p(n)} \to \{0,1\}^m$ and sends h to Merlin.
- 2. Merlin finds $y \in S(x)$ such that $h(y) = 0^m$ and sends y.
- 3. Arthur accepts if $h(y) = 0^m$ and $y \in S(x)$.

Completeness: If $|S(x)| \ge t \ge 2^{m-2}$ then by the Valiant-Vazirani analysis, with probability $\ge 1/8$ there exists some element in S(x) mapping to 0.

Soundness: If $|S(x)| < t/\alpha < 2^{m-1}/\alpha = 2^{m-3}$ then the probability that there exists some element in S(x) mapping to 0 is, by union bound, $\leq \sum_{y \in S(x)} \Pr_h[h(y) = 0^m] = |S(x)|/2^m \leq 2^{m-3}/2^m \leq 1/16$.

Since we have a finite gap 1/8 to 1/16, we can amplify as desired, giving us an **prAM** protocol.