
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 20

April 12, 2010 Scribe: Jonathan Pines

1 Agenda.

• PCPs.

• Approximation Algorithms.

• PCPs = Inapproximability.

2 History.

First, some history on the exciting series of results in the early 1990’s on probabilistic proof systems.
See later sections for some definitions.

• 1990: IP = PSPACE. In addition to being interesting in its own right, it was the most
dramatic example of a natural (and model-independent) nonrelativizing result, giving hope
that the methods could resolve some other open problems in complexity theory. The following
results followed in this vein and are also nonrelativizing.

• 1991: MIP = NEXP. MIP, or Multiprover Interactive Proofs, is the set of languages
verifiable by a single verifier with several provers who cannot communicate with one another.
This class was motivated by cryptography, such as Zero Knowledge Proofs without complexity
assumptions. Before this result, it was known that MIP = PCP(poly(n), O(1)).

• 1992: PCP Theorem: NP = PCP(log n,O(1)). This is basically a scaled down version of
the 1991 result, and is one of the most (if not the most) celebrated results in computational
complexity theory. This will be our focus for the next few lectures.

3 Probabilistically Checkable Proofs (PCPs).

3.1 Definitions.

We begin by defining PCP verifiers and PCP languages.

Definition 1 An (r(n), q(n)) PCP verifier for a language L with completeness c(n) and sound-
ness s(n) is an PPT oracle algorithm V with oracle Π such that the following conditions hold, where
n = |x|, r(n) is the number of coin tosses, and q(n) is the number of oracle queries to Π.
completeness: x ∈ L⇒ ∃Π s.t. Pr[V Π(x) = 1] ≥ c(n).
soundness: x /∈ L⇒ ∀Π, P r[V Π(x) = 1] ≤ s(n).

1

We also require that V ’s oracle queries be nonadaptive, i.e. the set of queries depends only
on x and the coin tosses r, but not on the answers to previous oracle queries. Note that an
adaptive algorithm can be made nonadaptive with an exponential blowup in queries by trying all
query sequences.

Definition 2 PCPc,s(r, q) = {L : L has an (O(r(n)), q(n)) PCP verifier with completeness c and
soundness s}. When not specified, c and s default to 1 and 1/2 respectively. Note that Arora–Barak
has O(q(n)) in the definition, but we will want to give exact constants for q(n).

3.2 PCP Theorem.

Now we can state the main result for PCPs:

Theorem 3 (PCP Theorem) NP = PCP(log n,O(1)).

That is, NP statements have proofs that can be probabilistically verified by reading only a
constant number of bits. A stronger version of the theorem shows a value of 3 for the O(1).

Note that the proof oracle is very different from a standard NP witness. The intuitive idea is
that e.g. for a SAT witness, it’s possible that every partial assignment violates no clauses, yet the
full assignment does not satisfy the formula. For a PCP, we need that when x /∈ L, then any proof
oracle has many local errors.

One application of this result is that one can encode standard proofs of mathematical theorems
using a verifier that checks only a constant number of bits. In particular, applying the PCP
Theorem to the NP language

L = {(φ, 1n) : φ a statement in Zermelo-Frenkel (ZF) Set Theory w/a proof of length ≤ n},

one can encode the proof as a probabilistically checkable one using a constant number of bits.
Now, we proceed with the easy direction of the proof.

Proof:
(⊇) Given a language L ∈ PCP(log n,O(1)), we use as an NP witness the set of answers to

all possible queries made by the PCP verifier V to the oracle Π. There are at most 2r(n) possible
coin tosses and at most q(n) queries for each, for a total of at most 2r(n) · q(n) ≤ poly(n) queries.
Then the NP verifier can check the queries for consistency (i.e. the same oracle query for different
coin tosses gets the same answer), enumerate all 2r(n) ≤ poly(n) coin tosses, and deterministically
compute the proportion of coin tosses on which V accepts. Accept iff the proportion is at least
c(n).

(⊆) This direction is much more involved and would take at least a couple of weeks (a few years
ago, it would have taken a month or two). Next time, we will see a weaker version of the PCP
theorem that gives the flavor of the methods.

One point to take away from the above proof is that the length of the proof oracle is effectively
bounded by 2r(n) · q(n), since the verifier can only read so many locations over all its coin tosses
and queries. This one of the main reasons we are interested in PCPs with logarithmic randomness.
Logarithmic randomness also ensures that we can completely verify the proof in deterministic
polynomial time, by enumerating over all sequences of coin tosses.

Next we’ll go over approximation algorithms and then see that they are closely related to PCPs.

2

4 Approximation Algorithms (for NP-complete problems).

4.1 NP optimization problems.

First we look at a class of problems, and next we will discuss algorithms providing approximate
solutions thereto.

Recall (from PS0) that an optimization problem specifies an objective function for each input
x, and then compute the optimal objective value over all assignments y. Thus a maximization
problem is maxy Objx(y), and similarly a minimization problem is miny Objx(y). For convenience,
we also allow specification of a set Sx of feasible solutions, and compute the max or min over
y ∈ Sx. This does not change the class of problems, as we could always specify an arbitrarily small
objective value for values of y that do not match the constraints of Sx. We require that both the
objective function and feasibility be computable in poly-time (in n = |x|) for a given y.

4.2 Examples of optimization problems.

• MAX-3SAT: maxy∈{0,1}n
∑

i φi(y), where φi are the clauses in the formula. That is, the
maximum number of clauses satisfiable over all assignments. This problem has no constraints.

• Max-E3SAT: the same, but with clauses of size exactly 3. This is slightly different with
respect to approximation algorithms.

• Max-qCSP: the same, but the clauses φi can be arbitrary functions of arity q, i.e. depending
on at most q variables. This problem comes up frequently in AI applications. Note that
MAX-3SAT is a special case of MAX-3CSP

• MIN-VC or minimal vertex cover, where the input is a graph G = (V,E) and the objective
is the smallest vertex cover size: minS⊆V |S| such that ∀(u, v) ∈ E, (u ∈ S) ∨ (v ∈ S).

• MAX-IS or maximal independent set, i.e. the largest set such that no two vertices share an
edge.

• MIN-TSP: input is a distance matrix D of cities, problem is to minimize total distance
traveled over all permutations of cities.

Many NP-complete problems have natural optimization versions. Thus, it is natural to consider
approximation algorithms computing near-optimal solutions for such problems.

Definition 4 A ρ-approximation algorithm to a minimization problem, for ρ ≥ 1, is an algo-
rithm that on input x outputs a solution y such that Objx(y) ≤ ρ ·Optx, where Optx is the optimal
(minimal) value. For a maximization problem, we require that Objx(y) ≥ ρ ·Optx where ρ ≤ 1.

Note that Arora–Barak always uses ρ ≥ 1 so that for a maximization problem one refers to a
1/ρ-approximation. In context only one makes sense, so one can always switch between the two
without confusion.

3

4.3 Examples of approximation algorithms.

We consider some simple approximation algorithms.

• 7/8-approximation for Max-E3SAT. Simply output a random assignment. Then the ex-
pected number of assignments is Ey[

∑
i φi(y)] =

∑
i Pr[φi(y) = 1] = 7/8 ·m ≥ 7/8 ·Optx since

only one of eight assignments violates a given clause. This algorithm can be derandomized
via a greedy algorithm to always satisfy 7/8 of the clauses.

• 2-approximation for MIN-VC. Greedily find a maximal matching M , i.e. a matching such
that no other matching is a strict superset thereof, by adding edges until every edge shares
a vertex with an already chosen edge, which can be done in one pass. Then the set S of all
matched vertices is a vertex cover, since if any edge has no endpoint in S then that edge can
be added to the matching. Also, |S| = 2 · |M | ≤ 2 · Optx, since every edge in the maximal
matching must have at least one endpoint in a minimal vertex cover.

Note that all NP-complete problems are equivalent for exact solutions, in the sense that an
algorithm for one gives an algorithm for another. On the other hand, we’ll see that some NP-
complete optimization problems have no constant approximation, while others have approximations
arbitrarily close to 1.

There are many useful approximation algorithms that are less trivial than those described above.
We list a couple examples without describing the algorithms in full.

• 0.878... (irrational)-approximation for MAX-CUT, using semidefinite programming.

• (1+ε)-approximation for MIN-EUCLIDEAN-TSP, i.e. TSP embedded in Euclidean space,
using a divide and conquer approach with dynamic programming.

• 2o(n)-approximation for shortest vector in an n-dimensional lattice, using the well-known LLL
algorithm. This approximation seems weak, but it turns out to be extremely powerful and
can be used for factoring polynomials over the integers or breaking certain cryptosystems.
There is evidence that no constant-approximation algorithm exists for this problem.

5 PCPs = Inapproximability

5.1 Main result.

At last, we have the machinery to compare PCPs with approximation algorithms and get the
following result.

Theorem 5 NP = PCPc,s(log n, q) ⇔ Gapc,sMax-qCSP is NP-hard under polynomial-time
mapping reductions.

We need to define Gapc,sMax-qCSP. This will be a promise problem, which is the only reason
why we say that it is NP-hard rather than NP-complete. Alternatively, we could say that it
is prNP-complete. (prNP-hardness is the same NP-hardness, since every promise problem in
prNP reduces to a language in NP, namely the set of instances for which there exists a witness
that makes the polynomial-time verifier for the problem accept.)

4

Similar to previous definitions of gap promise problems we have seen (in the context of approx-
imate counting), for an arbitrary maximization problem Π and ρ ≥ 1, we define

(GapρΠ)Y = {(x, t) : Optx ≥ t}
(GapρΠ)N = {(x, t) : Optx < ρt}

It can be shown that having a polynomial-time algorithm that decides GapρΠ is equivalent to
having a polynomial-time algorithm that computes a ρ-approximation to the value of Optx.

For Max-qCSP (and analogously Max-SAT), we also define a version where the thresholds
are fixed relative to the number of clauses:

(Gapc,sMax-qCSP)Y = {φ : Optφ ≥ c ·m}
(Gapc,sMax-qCSP)N = {φ : Optφ ≤ s ·m},

where m is the number of clauses in φ. (A minor technicality is that we have switched from strict
inequality to non-strict inequality in the NO instances. This is to allow us to state Theorem 5
cleanly, matching the fact that soundness is defined with non-strict inequality.)

From the definition, we see that Gapc,sMax-qCSP reduces to GapρMax-qCSP for any ρ < c/s,
since one can specify t = c ·m.

Taking for example the case c = 1, s = 1/2, we interpret Theorem 5 as stating that hardness of
distinguishing satisfiable from at most 50% satisfiable is equivalent to having a PCP characteriza-
tion for NP. Now, the proof.

Proof:
(⇒) Given a language L ∈ NP with a PCP verifier V having completeness c, soundness s,

O(log n) tosses and q(n) queries, we map an instance x ∈ L to an instance φx = {φ1, ..., φm} of
Max-qCSP as follows:

• Variables of φx: bits Πi of a possible proof oracle Π

• Clauses of φx: for each sequence r of verifier coin tosses, we have a clause φr that represents
the verifier’s acceptance predicate. Specifically, if on coin tosses r, V (x; r) would query the
proof oracle at positions i1, . . . , iq, then the clause φr(Πi1 , . . . ,Πiq) accepts an assignment to
Πi1 , . . . ,Πiq if and only if V (x; r) would accept those responses to its oracle queries.

Since at most O(log n) coins are tossed, the total number of coin tosses and thus clauses is at
most 2O(logn) ≤ poly(n). Also, since V reads at most q bits of proof for each toss r, the arity of
each clause is at most q. Finally, the total number of variables used is at most 2O(logn) ·q ≤ poly(n).
It remains to check the completeness and soundness properties, i.e. to verify that there is a gap in
number of satisifiable clauses for yes vs. no instances of the original problem.

Completeness: x ∈ L⇒ ∃Π : Pr[V Π(x; r) = 1] ≥ c. Then by construction, the same assignment
Π to the formula φx will satisfy at least c ·m clauses, namely, the clauses corresponding to coin
tosses resulting in V ’s acceptance.

Soundness: x /∈ L⇒ ∀Π,Π the probability of V Π accepting is at most s, i.e. any Π satisfies at
most s ·m clauses of φx.

(⇐) Suppose we have a reduction f from an arbitrary language L ∈ NP to Gapc,sMax-qCSP.
Then for a PCP proof that x ∈ L, we let the PCP proof oracle provide assignments to variables

5

of φ = f(x). By nature of the reduction, we know:
x ∈ L⇒ ∃ assignment satisfying at least a c fraction of the clauses of φ.
x /∈ L⇒ ∀ assignment satisfies at most an s fraction of the clauses of φ.

Thus if the PCP verifier simply flips coins to pick a random clause, asks the proof oracle for
the variable assignments in that clause, and checks the clause’s value, then exacty the desired gap
in acceptance probabilities will hold. Note that this requires O(log n) coin tosses to pick one of
poly clauses, and the arity q of the clause is the number of variable assignment needed and thus
the number of oracle bits read.

Using this connection, we can restate the PCP Theorem as follows:

Theorem 6 (PCP Theorem, restated) There is a constant q such that Gap1,1/2Max-qCSP
is NP-hard under polynomial-time mapping reductions.

Corollary 7 There is a constant q such that Max-qCSP has no .51-approximation algorithm.

5.2 Further Remarks

This gives us a starting point for proving other hardness results for approximation algorithms.
Note, however, that standard reductions to do necessarily preserve the approximation factor (as
you have seen in the context of counting). Thus, while all NP-complete optimization problems
are equivalent as far as finding exact solutions, when considering their approximability, they can
behave very differently (as we will see).

There is a large and ongoing body of work devoted to figuring out the best approximation factors
for different optimization problems. One result is that Gap1,7/8−ε-MAX-3SAT is NP-hard.

6

