CS 221: Computational Complexity Prof. Salil Vadhan
Lecture Notes 21

April 14, 2010 Scribe: Brad Seiler

Agenda

1. NP C PCP(poly(n),O(1))

Recap

L € PCP,4(r(n),q(n)) means that we have a PPT oracle algorithm V' that has access to r(n)
coins and may read ¢g(n) bits from the proof oracle m, s.t.:

e Completeness: x € L = 3m, Pr.[V™(x;r) = 1] > ¢(n)
e Soundness: © ¢ L = Vr,Pr, [V™(z;7) = 1] < s(n)
Today, ¢(n) =1,s(n) =1/2

PCP Theorem

Last time we stated without proof:
Theorem 1 (PCP Theorem) NP = PCP(logn,O(1)).

We don’t have time to give the full proof of the PCP theorem (it would take a couple of weeks),
but instead will prove the following weaker version:

Theorem 2 (Easier PCP Theorem) NP C U.PCP(n¢, O(1)) (with exponential proof length).

All known proofs of the full PCP theorem use this weaker PCP theorem as one of their building
blocks.

Proof Sketch:
1. Work with NP-complete problem: QQUADRATIC EQUATIONS over Zs = GF(2)
2. PCP proof will be all quadratic functions of a satisfying assignment.
3. PCP verifier will:

(a) Check that proof is “close” to a valid encoding of some assignment wu.
(b) Decode to a proper encoding with only O(1) queries.

(c¢) Verify that a random linear combination of the original system of equations is satisfied
by wu.
O

The Problem
Definition 3 QUADRATIC EQUATIONS over Zs. Given a system of equations, each of the form
Z Qi T + Z b;x; = c.
i<j i
where all arithmetic is modulo 2, is there an assignment to the variables {x;} satisfying all the
equations?

Claim 4 QUADRATIC EQUATIONS over Zs is NP-complete.

Proof of claim: Reduction from CIRCUIT SATISFIABILITY. For C(zy,...,z,), intro-
duce variables p41,...,xy for the binary gates in C.

Ti=TjN\NTp+— T =Tj T
T; = x> x; =1 —x;

Add equation x,,, = 1, where z,, is the output gate. U

Walsh-Hadamard Encoding
Linear Functionsa

Definition 5 For u € {0,1}" = Z%, the Walsh-Hadamard encoding of u, WH(u) € Z2", consists
of all Zs-linear functions of u.

That is, for each v € Z5, WH(u), =u®v =Y, u;v; (mod 2) = ulv.

Equivalently,we can view WH(u) as a function WH(u) : Z§ — Za, where WH(u)[v] = v ®v. That
is, WH(u) is the linear function whose coefficients are given by u.

Lemma 6 Yu; # ug, Pryu; @ v =us ®v] =1/2.

That is, WH is an error-correcting code with relative distance 1/2. This gives hope that we can
distinguish satisfying assignments from non-satisfying ones with O(1) probes.

Quadratic Functions

Look at W H encoding of u®@u € 232 where (4 ®v);; = u;vj, also can be considered as matrix uv?,

where the vectors are written as column vectors. Opposite of the inner product ©.

n2
Thus, WH(uu®) € Z3" contains all homogenous quadratic functions of u. If A € Z5*™ then
WH(UUT)[A] = Zi,j Aijuiuj.

The PCP Proof Oracle

Given an instance of QUADRATIC EQUATIONS with n variables, our PCP oracle will consist of two
functions f : Z§ — Zg and g : Z§2 — 7 that are supposed to be f = WH(u) and g = WH(uu”)
for some satisfying assignment u. (However, we must prove soundness regardless of what functions
(f,9), the verifier gets as oracle.)

Checking Closeness

Our goal is to test that (f,g) are “close” to (WH(u), WH(uu")) for some u. Define “close” by:
f1, f2 are 0—close if Pr,[f1(z) = fa(z)] > 0.

Linearity Testing

We need to test that f:Z5 — Zsy is d—close to some WH(u), or some linear function on Z5.

Definition 7 (Blum-Luby-Rubinfeld Linearity Test) Pickx,y < Z3, check if f(z)+f(y) =
f(z+vy). Repeat O(1) times.

Theorem 8 The BLR Linearity Test satifisfies:

o Completeness: If f is linear, then Prp [f(x) + f(y) = f(x +y)] = 1.

e Soundness: If Pry ,[f(x)+ f(y) = f(x+y)] > 1—0 then f is (1 —O(0))-close to some linear
function f (i.e. f=WH(u) for some u).

Another perspective is that the linearity test is a sublinear-time algorithm for the promise problem:
This gives a sublinear algorithm for the promise problem:

TEST.LINEARITYy = {f: [is linear}
TEST-LINEARITYy = {f:f is far from linear}.

Note that the input length here is 2" if f is a function from Z% — Zy. However, the BLR linearity
test just reads a constant number of bits from this input and runs in time O(n).

“Property Testing” studies general algorithm problems of this type. On PS6, you will see an
example of a property testing algorithm for a graph property.

For a proof of Linearity Testing, see next lecture.

PCP Verifier

Checking that f, g are close to linear

For small constant §, PCP Verifier will run linearity test on f,g O(1/§) times, to ensure that f,g
are (1 — 0) close to some pair of linear functions.

Decoding them to a valid encoding

Claim 9 Assuming f,g are (1 — 8)-close to two linear functions (f,§), we can compute f,§ on
any desired input with O(1) probes to f,g, using random-self-reducibility of linear functions.

Proof of claim: To compute f(x), pick y «— Z%, output f(z +y) — f(y). If f = f,
a linear function, then this always works. But if f is (1 — d)-close to linear f, then
Vo, Pry[f(z +vy) — f(y) # f(x)] < 24. (This works for g too.)

This allows a query to f(as) on a arbitrary input x,even if f(x) # f(a:) O

From now on assume access to f,g.

Testing consistency of f,g

Claim 10 Given oracle access to f,f], we can test that f = WH(u) and § = WH(uuT) for some
w. Since f is linear, we are only checking that f and g use the same u.

Proof of claim: Choose a random 7, s — Z5 and check that f(r)f(s) = g(rsT).
Completeness: If f = WH(u),§ = WH(uu?), then g(rs?) = Zi’j(rsT)ij(uuT)ij =

Do Tisjuity = > s riusiuy = (r Qu)(s O u) = f(r)f(s).

Soundness: Suppose that f = WH(u) but § = WH(B),B # wuu’. Applying
Lemma 6 to a row on which B and uwu® differ, we have: Pry[Bs # (uul)s] > 1/2.
Furthermore, Pr,s[r"Bs # rTuu”s] > 1/4. Since j(r,s) = r"Bs and f(r)f(s) =
(rTu)(u”'s), this proves soundness. O

Now assume that (f,§) = (WH(u), WH(uuT)).

Testing that u satisfies the system

Claim 11 We can test whether u satisfies a random linear combination of the quadratic equations
to see if it satisfies the system.

Proof of claim: If u satisfies the system then it will satisfy any linear combination.
If u does not satisfy the system, then it will fail to satisfy a random linear combi-
nation with probability 1/2. O

