
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 21

April 14, 2010 Scribe: Brad Seiler

Agenda

1. NP ⊆ PCP(poly(n), O(1))

Recap

L ∈ PCPc,s(r(n), q(n)) means that we have a PPT oracle algorithm V that has access to r(n)
coins and may read q(n) bits from the proof oracle π, s.t.:

• Completeness: x ∈ L =⇒ ∃π,Prr[V π(x; r) = 1] ≥ c(n)

• Soundness: x /∈ L =⇒ ∀π,Prr[V π(x; r) = 1] ≤ s(n)

Today, c(n) = 1, s(n) = 1/2

PCP Theorem

Last time we stated without proof:

Theorem 1 (PCP Theorem) NP = PCP(log n,O(1)).

We don’t have time to give the full proof of the PCP theorem (it would take a couple of weeks),
but instead will prove the following weaker version:

Theorem 2 (Easier PCP Theorem) NP ⊆ ∪cPCP(nc, O(1)) (with exponential proof length).

All known proofs of the full PCP theorem use this weaker PCP theorem as one of their building
blocks.

Proof Sketch:

1. Work with NP-complete problem: Quadratic Equations over Z2 = GF(2)

2. PCP proof will be all quadratic functions of a satisfying assignment.

3. PCP verifier will:

(a) Check that proof is “close” to a valid encoding of some assignment u.
(b) Decode to a proper encoding with only O(1) queries.
(c) Verify that a random linear combination of the original system of equations is satisfied

by u.
�

1



The Problem

Definition 3 Quadratic Equations over Z2. Given a system of equations, each of the form∑
i<j

aijxixj +
∑
i

bixi = c.

where all arithmetic is modulo 2, is there an assignment to the variables {xi} satisfying all the
equations?

Claim 4 Quadratic Equations over Z2 is NP-complete.

Proof of claim: Reduction from Circuit Satisfiability. For C(x1, . . . , xn), intro-
duce variables xn+1, . . . , xm for the binary gates in C.

xi = xj ∧ xk 7→ xi = xj · xk
xi = ¬xj 7→ xi = 1− xj
Add equation xm = 1, where xm is the output gate. �

Walsh-Hadamard Encoding

Linear Functionsa

Definition 5 For u ∈ {0, 1}n = Zn2 , the Walsh-Hadamard encoding of u, WH(u) ∈ Z2n

2 , consists
of all Z2-linear functions of u.
That is, for each v ∈ Zn2 , WH(u)v = u� v =

∑
i uivi (mod 2) = uT v.

Equivalently,we can view WH(u) as a function WH(u) : Zn2 → Z2, where WH(u)[v] = u� v. That
is, WH(u) is the linear function whose coefficients are given by u.

Lemma 6 ∀u1 6= u2,Prv[u1 � v = u2 � v] = 1/2.

That is, WH is an error-correcting code with relative distance 1/2. This gives hope that we can
distinguish satisfying assignments from non-satisfying ones with O(1) probes.

Quadratic Functions

Look at WH encoding of u⊗u ∈ Zn2

2 where (u⊗v)ij = uivj , also can be considered as matrix uvT ,
where the vectors are written as column vectors. Opposite of the inner product �.
Thus, WH(uuT ) ∈ Z2n2

2 contains all homogenous quadratic functions of u. If A ∈ Zn×n2 , then
WH(uuT )[A] =

∑
i,j Aijuiuj .

The PCP Proof Oracle

Given an instance of Quadratic Equations with n variables, our PCP oracle will consist of two
functions f : Zn2 → Z2 and g : Zn2

2 → Z2 that are supposed to be f = WH(u) and g = WH(uuT )
for some satisfying assignment u. (However, we must prove soundness regardless of what functions
(f, g), the verifier gets as oracle.)

2



Checking Closeness

Our goal is to test that (f, g) are “close” to (WH(u),WH(uuT )) for some u. Define “close” by:
f1, f2 are δ−close if Prx[f1(x) = f2(x)] ≥ δ.

Linearity Testing

We need to test that f : Zn2 → Z2 is δ−close to some WH(u), or some linear function on Zn2 .

Definition 7 (Blum–Luby–Rubinfeld Linearity Test) Pick x, y ←R Zn2 , check if f(x)+f(y) =
f(x+ y). Repeat O(1) times.

Theorem 8 The BLR Linearity Test satifisfies:

• Completeness: If f is linear, then Prx,y[f(x) + f(y) = f(x+ y)] = 1.

• Soundness: If Prx,y[f(x) + f(y) = f(x+ y)] ≥ 1− δ then f is (1−O(δ))-close to some linear
function f̃ (i.e. f̃ = WH(u) for some u).

Another perspective is that the linearity test is a sublinear-time algorithm for the promise problem:
This gives a sublinear algorithm for the promise problem:

TestεLinearityY = {f : f is linear}
TestεLinearityN = {f : f is far from linear}.

Note that the input length here is 2n if f is a function from Zn2 → Z2. However, the BLR linearity
test just reads a constant number of bits from this input and runs in time O(n).
“Property Testing” studies general algorithm problems of this type. On PS6, you will see an
example of a property testing algorithm for a graph property.
For a proof of Linearity Testing, see next lecture.

PCP Verifier

Checking that f, g are close to linear

For small constant δ, PCP Verifier will run linearity test on f, g O(1/δ) times, to ensure that f, g
are (1− δ) close to some pair of linear functions.

Decoding them to a valid encoding

Claim 9 Assuming f, g are (1 − δ)-close to two linear functions (f̃ , g̃), we can compute f̃ , g̃ on
any desired input with O(1) probes to f, g, using random-self-reducibility of linear functions.

Proof of claim: To compute f̃(x), pick y ← Zn2 , output f(x + y) − f(y). If f = f̃ ,
a linear function, then this always works. But if f is (1 − δ)-close to linear f̃ , then
∀x,Pry[f(x+ y)− f(y) 6= f(x)] ≤ 2δ. (This works for g too.)

This allows a query to f̃(x) on a arbitrary input x,even if f(x) 6= f̃(x). �

From now on assume access to f̃ , g̃.

3



Testing consistency of f̃ , g̃

Claim 10 Given oracle access to f̃ , g̃, we can test that f̃ = WH(u) and g̃ = WH(uuT ) for some
u. Since f̃ is linear, we are only checking that f̃ and g̃ use the same u.

Proof of claim: Choose a random r, s→ Zn2 and check that f̃(r)f̃(s) = g̃(rsT ).
Completeness: If f̃ = WH(u), g̃ = WH(uuT ), then g̃(rsT ) =

∑
i,j(rs

T )ij(uuT )ij =∑
i,j risjuiuj =

∑
i,j riuisjuj = (r � u)(s� u) = f̃(r)f̃(s).

Soundness: Suppose that f̃ = WH(u) but g̃ = WH(B), B 6= uuT . Applying
Lemma 6 to a row on which B and uuT differ, we have: Prs[Bs 6= (uuT )s] ≥ 1/2.
Furthermore, Prr,s[rTBs 6= rTuuT s] ≥ 1/4. Since g̃(r, s) = rTBs and f̃(r)f̃(s) =
(rTu)(uT s), this proves soundness. �

Now assume that (f̃ , g̃) = (WH(u),WH(uuT )).

Testing that u satisfies the system

Claim 11 We can test whether u satisfies a random linear combination of the quadratic equations
to see if it satisfies the system.

Proof of claim: If u satisfies the system then it will satisfy any linear combination.
If u does not satisfy the system, then it will fail to satisfy a random linear combi-

nation with probability 1/2. �

4


