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1 Linearity Testing

Last time, we proved that NP ⊆ PCP(poly(n), O(1)). In this model, the verifier tosses a poly-
nomial number of coins, which means the proof could be exponentially long, but still uses only a
constant number of queries. A key step was having the verifier check whether the proof oracles f and
g are close to being linear functions. Proof oracle was supposed to consist of (WH(u),WH(uuT )),
where WH(u) is the truth-table of the linear function fu(x) =

∑
i uixi mod 2, and the verifier

assumes that both are close to linear functions, and proceeds from there.

Definition 1 f1, f2 : Zn2 → Z2 are α-close if Prx∈Zn
2
[f1(x) = f2(x)] ≥ α.

Definition 2 f is linear if ∀x, y ∈ Zn2 f(x) + f(y) = f(x+ y), where all arithmetic is in Zn2 .

Linearity Test for oracle f : Zn2− > Z2 : Choose x, y randomly ( R←) Zn2 . Accept if f(x+ y) =
f(x) + f(y).
Even though linearity is a global property, we will show that this local checking is sufficient.

Theorem 3 • Completeness: If f is linear, then Prx,y[f(x+ y) = f(x) + f(y)] = 1.

• Soundness: if Prx,y[f(x + y) = f(x) + f(y)] ≥ 1 − δ for δ < 1/14, then f is (1 − 2δ)-close
to some linear f̃ .

Proof: The completeness follows immediately from the definition of linearity, so we proceed with
soundness. Take f̃(x) = majy f(x + y) − f(y). If f were truly linear, then this would always be
f(x). Here we take the majority vote. If there is a tie, we can break it arbitrarily, but we’ll see
below that there will never be a tie.

Claims:

1. Votes are overwhelming - always an overwhelming winner: ∀xPry[f(x+ y)− f(y) = f̃(x)] ≥
1− 4δ. (Fraction of votes that the majority gets is approaching 1.)

2. f̃ ≈ f : Prx[f̃(x) = f(x)] ≥ 1− 2δ, for a slightly different constant.

3. f̃ is linear: ∀x, y f̃(x+ y) = f̃(x) + f̃(y) (provided δ < 1/14).
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Proof of Claim 1: Fix x. Note that the test does not look at worst case x, but here we prove
something about f̃ for the worst case x.

Pr
y

[f(x+ y)− f(y) 6= f̃(x)] ≤ 2 · Pr
y,z

[f(x+ y)− f(y) 6= f(x+ z)− f(z)]

≤ 2 · (Pr[f(x+ y) + f(z) 6= f(x+ y + z)] + Pr[f(x+ z) + f(y) 6= f(x+ y + z)])
= 2 · (δ + δ) = 4δ

The first line follows because f̃ is the majority vote over z of f(x + z)− f(z), so at least half the
time f̃(x) = f(x + z) − f(z). Now, none of the evaluation points are themselves worst case. The
second line follows because if the top equation fails, then it must be the case that one of the terms
on the second line fails, by a union bound. We then have two single instances of the linearity test,
so the overall bound is just δ for each term, which gives 2δ, so 4δ overall.

Proof of Claim 2:

Pr
x

[f(x) 6= f̃(x)] ≤ 2 · Pr
xz

[f(x) 6= f(x+ z)− f(z)] ≤ 2δ,

where the first inequality follows again because f̃(x) is the majority of f(x + z) − f(z) and the
second because it is just an instance of the linearity test.

Proof of Claim 3: Now nothing is random in the claim: we are making a statement about every
x and y. Fix x, y, and show f̃(x) + f̃(y) = f̃(x+ y). We know by Claim 1:

Pr
w

[f̃(x) = f(x+ w)− f(w)] ≥ 1− 4δ

Pr
z

[f̃(y) = f(y + z)− f(z)] ≥ 1− 4δ

Pr
w,z

[f̃(x+ y) = f(x+ y + w + z)− f(w + z)] ≥ 1− 4δ

Now f(x+ w) + f(y + z) = f(x+ y + w + z) holds except with probability δ over w, z. And that
f(w) + f(z) = f(w + z) holds except with probability δ, for a total of 12δ + δ + δ = 14δ, So if
δ < 1/14, then we get that Pw,z[f̃(x) + f̃(y) = f̃(x + y)] > 0. But this event has no randomness,
so it just means that f̃(x) + f̃(y) = f̃(x+ y).

What we have done works for testing homomorphisms f : G → H for any abelian groups G,H.
(When |H| > 2, then the majority vote in the definition of f̃ should be replaced with a plurality
vote — taking the most likely value.) There is a tighter analysis specific to G = Zn2 and H = Z2

in one of the later chapters of Arora–Barak which uses Fourier Analysis. The tighter analysis is
important for getting tight inapproximability results.

2 More Inapproximability

Recall for a maximization problem Π, 0 < ρ ≤ 1:

(GapρΠ)Y = {(x, t) : Optx ≥ t}
(GapρΠ)N = {(x, t) : Optx < ρt}
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The general optimization problem is to find the largest number of satisfied clauses, largest inde-
pendent set. We make this decisional by introducing the threshold, and asking if the optimal value
is greater than t, or less than ρt. Minimization case is similar, except that ρ > 1, and the condition
is Optx ≤ t, and Optx > ρt.

Examples:

• Π = Max-3SAT, x = {φ1, ..., φm}, each φi = OR of 3 literals. Optx = max # clauses that
can be satisfied.

• Π = Max-qCSP, same but each φi = function of q variables (not necessarily OR).

• Gapc,s instead of Gapρ: Here the promise problem has YES instances x where Optx ≥ c ·m
and NO instances where Optx ≤ s · m. (We switch from strict inequality to non-strict
inequality, but not particularly significant.)

We saw that the PCP Theorem is equivalent to the following:

Theorem 4 (PCP Theorem, restated) There is a constant q such that Gap1,1/2Max-qCSP
is NP-hard under polynomial-time mapping reductions.

PCP Theorem gives the first inapproximability result, and we use it to get other inapproximability
result.
Today we assume PCP Theorem and deduce more inapproximability results. But first we state a
couple of simple corollaries of the PCP Theorem.

Corollary 5 There is a constant q s.t. ∀ρ > 1/2,GapρMax-qCSP is NP-hard under polynomial-
time mapping reductions.

We just switched from c, s version to a single parameter. This is immediate: if we could use a single
parameter, we could just use that to distinguish between fully satisfiable and 1/2 satisfiable. Just
let t = m = #clauses.

Corollary 6 There is a constant q such that if P 6= NP, there is no poly-time algorithm that given
any satisfiable q-CSP instance finds an assignment satisfying more than half of the clauses.

If we did have such an algorithm, then we could separate yes and no instances of Gap1,1/2Max-qCSP.
Now, we use the PCP Theorem to deduce inapproximability for 3-SAT.

Theorem 7 There is a constant ε > 0 such that Gap1,1−εMax-3SAT is NP-hard under polynomial-
time mapping reductions.

Compared to the basic PCP Theorem, here we get inapproximability for q = 3 and for constraints
of a specific type (ORs of literals), but we lose in the amount of approximation that is hard. From
our proof, ε will be very small, but it still means we cannot distinguish perfectly satisfiable from
99.99% satisfiable.
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Proof: We’ll show that Gap1,1/2Max-qCSP ≤ Gap1,1−εMax-3SAT.
Given a Max-qCSP instance φ = {φ1, . . . , φm}, we’ll apply the Cook-Levin reduction (separately)
on each constraint φi(x1, . . . , xn) to get a 3-CNF formula φ′i = ∧jφ′ij , where φ′i depends on the q

variables in φi plus some auxiliary variables y(i)
1 , . . . , y

(i)
t . The number t of auxiliary variables and

the number k of 3-clauses φ′ij equal the number of gates in a circuit computing φ′i, which is at most
2q = O(1) since φ′i depends on at most q variables.
If φi(x) = 1, then there exists an assignment y(i) to the new variables such that all clauses of φ′i
satisfied. On the other hand, if φi(x) = 0, then no matter how we assign y(i), at least one clause of
φ′i will not be satisfied.
So we map φ to φ′ = {φ′ij}. If φ satisfiable, φ′ is satisfiable. If φ is at most 1/2-satisfiable, then
φ′ is at most (1 − 1

2k )-satisfiable, where again k ≤ 2q. For each one constraint φi not satisfied,
you must violate at least a 1/k fraction of the new clauses φ′ij . So we have a very small constant
ε = 1/2k = Θ(1/2q) here.

2.1 Vertex Cover

Theorem 8 There is a constant ε > 0 such that Gap2/3,2/3+ε −Min-VC is NP-hard under Karp
reductions.

Here Gapa,b −Min-VC for a < b is the promise problem where YES instances are graphs with a
vertex cover of size at most an and NO instances are graphs where every vertex cover has size at
least bn, where n is the number of vertices in the graph.

Corollary 9 There exists a constant ε > 0 such that there is no (1 + ε)-approximation algorithm
for vertex cover unless P = NP.

Proof: We’ll show that the usual reduction from 3SAT to VC gives a reduction from Gap1,1−εMax-3SAT
to Gap2/3,(2+ε)/3Min-VC. (So we can do reductions between approximation problems, but we need
to be more careful and quantitative, and check how the objective function quantitatively translates
from one to the other.)
φ 7→ G: Clause x ∨ y ∨ ¬z goes to triangle of vertices all connected, which we think of as being
labelled with the literals in the clause. Then we connect all oppositely labeled vertices: if there is
anther triangle with ¬x, we connect x to ¬x.
φ satisfiable ⇒ G has a VC of size at most 2m, where m is the number of clauses. (There are
2m/3 triangles in the graph.) The reason is that in each clause you need two vertices to cover three
edges. In each clause, omit something true, then you will never omit both endpoints of one of the
crossing edges.
φ not (1− ε)-satisfiable⇒ all vertex covers of G are of size at least (2 + ε)m. Otherwise, it must be
the case that at least (1− ε)m triangles have a vertex not in the cover. Setting these corresponding
literals to true satisfies (1− ε)m clauses.
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