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1 Recall

• There exists a poly-time 2-approximation algorithm for MIN-VC

• There exists ε > 0 such that Gap 2
3
, 2+ε

3
Min-VC is NP-hard.

This implies that there does not exists a poly-time (1 + ε′) approximation algorithm for
Min-VC with ε′ < ε/2 unless P = NP. So Min-VC has a poly-time approximation, but not
an arbitrarily good one.

2 Inapproximability

2.1 MAX-IS

Definition 1 Max-IS: Given a graph G, find an independent set of maximum size.

Theorem 2 (Assuming PCP theorem) For every constant ρ > 0, there exists no ρ-approximation
for MAX-IS unless P = NP

Proof:

Lemma 3 Gap1−a,1−bMin-VC ≤l Gapa,bMax-IS.

Here Gapa,bMax-IS, for a > b is the promise problem where YES instances are graphs with an
independent set of size at least an and NO instances are graphs in which every independent set has
size at most bn.
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Proof: The reduction is the identity mapping, and the correctness follows from the fact that a
set S is a vertex cover iff its complement is an independent set.

Lemma 4 Gapa,bMax-IS ≤ Gapak,bkMax-IS.

Note: if a > b, then bk/ak → 0 as n→∞

Proof: Given G = (V,E), map (V,E) 7→ Gk = (V k, Ek), where

Ek = {(u1, . . . , uk), (v1, . . . , vk) : ∃i(ui, vi) ∈ E}.

If S is an i.s. in G, then Sk is an i.s. in Gk, so MAX-IS(Gk) ≥ MAX-IS(G)k. We want to show
that the converse holds:

Let T ⊆ V k be an i.s. in Gk. Then the coordinate-wise projections π1(T ), . . . , πk(T ) are all
ind. sets in G (if you have 2 coordinates which are connected in G, there is an edge between them
in Gk). Then

T ⊆ π1(T )× . . .× πk(T ),

which implies that

|T | ≤ MAX-IS(Gk).

Hence, MAX-IS(Gk) = MAX-IS(G)k

Note: This says nothing about VC. In VC we would have 1−bk

1−ak → 1, so this method of “am-
plification” gets worse and worse in VC. Moral of the story: switching from maximization to
minimization is not equivalent for approximation.

2.2 Survey

Below ε > 0 denotes an arbitrarily small constant.
Problem Best known approximation algorithm NP-hard
Euclidean TSP (1 + ε)-approx
Max-3SAT 7/8-approx (7/8 + ε)-approx
Min-SetCover lnn-approx (1− ε) lnn-approx
Max-IS (polylog(n)/n)-approx (1/n1−ε)-approx

Note: The NP-hardness of the above problems is proven using PCP optimized for each problem.
You begin with a PCP problem and do clever amplifications, compositions.

Here are some problems where we don’t have tight NP-hardness results:
Problem Algorithm NP-hard UG-hard
Min-VC 2-approx ≈ 1.36 . . .-approx (2− ε)-approx

Max-Cut
.878 . . .-approx 17/16− 3 ≈ .94 . . .-approx .878 . . .-approx
(semi-definite programming)

Shortest Vector
≈ 2n/ log n-approx 2log1−ε n-approx
(looks bad, but really useful)

Where Max-Cut is the problem of partitioning a graph so that a single cut will sever as many
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edges as possible, and Shortest Vector is the problem of finding the approximate length of the
shortest vector in a lattice graph.

UG = “unique games”: this is an approximation problem/PCP variant that is conjectured to
be hard. An equivalent problem: given an (inhomogeneous) system of linear equations mod q, with
2 variables per equation, where q = q(ε) is a large constant, distinguish (1 − ε)-satisfiable from
ε-satisfiable. If this is hard, then our understanding of alot of approximation problems gets resolved
(as illustrated by the examples of Min-VC and Max-Cut above). As a result, this conjecture is
currently the subject of intense study. This study has also uncovered interesting connections with
mathematical questions in metric geometry and discrete Fourier analysis.

3 Algebraic Complexity

Question: How many arithmetic operations are needed to compute various polynomials of interest?

3.1 Model

Look at algebraic circuits (and formulas), C(x1, . . . , xn) over a fixed field F

• inputs: x1, . . . , xn and constants from F.

• gates: +, ·.

(Fact: ÷ doesn’t help much.) We view algebraic circuits as computing formal polynomials over
the field F. These can be evaluated at points in F (by substituting for the variables xi), but are not
necessarily determined only by the function they compute. (For example, x2 and x are different
polynomials over Z2, even though they compute the same function.)

3.2 Complexity Measures

• size = #gates (including inputs)

• non-scalar complexity/#“essential” operations = # multiplications not by a constant.

Motivation: this measure seeks to count the most expensive operations

• depths (as in boolean circuits): longest path from input to output, measures parallelism.

3.3 Examples

• Matrix Multiplication:

(Xij)(Yij)→ (Zij = ΣkXikYkj)

This sends 2n2 variables to n2 output polynomials.

Naive algorithm: O(n3)

Best known algorithm: O(n 2.37)

Best lower bound: ≈ 3n2
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• Discrete Fourier Transform: F = C x1
...
xn

 7→
 ωij


 x1

...
xn

 =

 y1
...
yn

 . (1)

Where ω = the primitive nth root of unity.

Naive algorithm: O(n2)

Fast Fourier Transform (FFT): O(n log n)

Best lower bound: no super linear lower bounds are known.

• Determinant:

Naive algorithm: O(n · n!)

Gaussian elimination: O(n3)

Best known: O(n 2.37

• Permanent:

Naive algorithm: O(n · n!)

Best known algorithm: O(2n)

Definition 5 Fix a field F. A sequence (pn(x1 . . . , xn))n∈N of polynomials over F is in AlgP/poly
(also called VP for “Valiant’s P”) if there exist polynomials d(n), s(n) such that for all n

1. deg(pn) ≤ d(n)

2. pn is computable by an arithmetic circuit of size at most s(n).

Why bound degree?

• deg ≤ 2size in any arithmetic circuit

• most functions of interest have low polynomially bounded degree

• it is useful in results

Definition 6 (pn(x1 . . . , xn))n∈N is in AlgNP/poly (a.k.a. VNP) if there exists a sequence of
polynomials (qn(x1 . . . , xn))n∈N in AlgP/poly and a polynomial t(n) such that for all n,

pn(x1, . . . , xn) =
∑

en+1,...et(n)∈{0,1}

qt(n)(x1, . . . , xn, en+1, . . . , et(n))

3.4 Next time

Theorem 7 • Det is complete for AlgP/poly.

• Perm is complete for AlgNP/poly.

Hence, AlgP/poly = AlgNP/poly ⇐⇒ Perm is a “projection” of the determinant.
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