CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 27

May 5, 2010 Scribe: James Williamson

1 Recap of Quantum Computation

e the state of an n-qubit register is given by:

p= Y asls)eC¥, o =1

se{0,1}n s

e starts in the state |z)|0%)[0™)
e apply a sequence of local unitary operators, each on O(1) qubits.
e measure the final state 3, a|s) and get s € {0, 1}t with probability |a|?.

e output the last m bits of s.

2 Quantum Fourier Transform

2.1 Discrete Fourier Transform

Take f : Zy; — C and map to f : Zpyr — C where below we assume that M = 2™,
The transform takes the form:

. 1 .
) = Wﬂcy7 W= e27m/M
@)= re > fw)
YELM
Now taking x € Zyy/p define fepen = f(20), foaa = f(x1) where we are fixing the least significant

bit to separate even and odd inputs. As derived in the previous lecture it is possible to write f
recursively in terms of the odd and even parts as follows:

F02) = Foven(x) + 0" foaa(®) (1)
f2) = Joen(®) — & foua(z) (2)

Using this recursive definition we can give the well known Fast Fourier Transform algorithm or
FFT:

1. Compute feyven and Ji;l recursively.

2. Recombine according to the recurrence stated above.

If the whole algorithm has (algebraic) complexity 7'(M), then the first step has complexity 27'(M/2)
and the second is O(M) since we need to do vector operations over vectors of length up to M.
Therefore T'(M) = 2T(M/2) + O(M) which when solved gives us a complexity of O(M log M). In
the classical case this is provably optimal for algebraic circuits over C with bounded coefficients
(i.e. all constants have magnitude O(1), such as the roots of unity used above).

2.2 Quantum Fourier Transfrom

The Quantum Fourier Transform operates on an m = log M qubit state taking

Y f@ae) = Y f@))

TEZ N TE€ELM

Note that we do not get the values of f (z) explicitly. However, we can measure the transformed

state and get x with probability ‘ f (x)| , so this enables us to sample the frequencies of the function

1.

Note that the recurrences above imply that the QFT can be split into even and odd parts as
follows:

gszf<x>|w>=j§ S [(one) + 7 Faaa(@)) 102) + (Feven (@) — " Foa(@)) 1)

IGZA{/Q

Now similarly to the classical DFT we give a recursive algorithm for QFT,;. We can use

quantum mechanics to enable us to use only one recursive call and hence to lower the complexity
from O(M log M) to O(log? M) = O(m?).
The algorithm is as follows:

L. Start with > 7 f(z)|z) and rewrite as:

Z (feven(2)[20) + foda(z)|21))

TELN)2

2. Apply QFT)/5 to the first m — 1 qubits to obtain

> (Fevenl@)[0) + foaa(@)la1))

TE€L N 2

3. For j =0,...,m — 2 with |zb) = |z;,—2 - - - 2ob), apply the following 2-qubit operation:

29 0. b=
25)]8) — w¥lz)|b) zj=b=1
|z;)]b) otherwise

Observe the effect of these m — 1 operations is the following:

20) > [a0)

21) — | [«*] le1) = w®la1)
Jixj=1

2

So our state now is:

> [feven)20) + w” foqq(x)|x1>],

IEZM/Q

4. Apply the Hadamard gate to the last qubit to obtain state:

\f > Kfeven + 0 foaa(@)) |20) + <@(m) —w"”ﬁd\d(x)> \x1>}

ZEGZ]M/Q

5. Swap the least significant qubit and the most significant qubit to obtain state.

> [(Foan(@) + @ Foaa@)) 102) + (Foren(@) =" foaa@)) [12)] = > f(a)

IGZ[\/[/Q IEZM

1
V2

as desired

For the complexity of this algorithm 1 and 5 are free operations, 4 takes one gate, 3 takes m — 1
and 2 takes T'(M/2) with total complexity given by T'(M) = T(M/2) + log M. This expands to
O(log? M) as desired, making this algorithm polynomial in the number of bits.

3 Factoring on a Quantum Computer

We shall use without proof the known result that there is a classical, randomized reduction from
factoring to finding the order of a number modulo N. To define this problem more formally, consider
Nand AeZy, ={be{0,...,N—1} | ged(b, N) = 1} Then we want to find ordy(A) which is the
least 0 < & < N — 1 such that A* =1 mod N.

Now we give a quantum algorithm for order finding given N, A. Let m = [5log N|, M = 2™ =
O(N?).

1. Generate the uniform superposition over Z s
A7 2 o
(EEZ]\{
by applying the Hadamard gate m times.
2. Use classical modular arithmetic to send each |z)|0) — |z)|A* mod N)

3. Measure to obtain yy € Z}; from each A* mod N leaving the state as follows:

= X o
TrEZpN AT mod N=yg
where K = #{x|A* mod N = yp}. Notice that if A mod N = yp, then we also have
A*" mod N = yp and A*"" mod N = gy where r = ord(A4). Conversely, if A% mod N = yg
and A"2 mod N = yg, then A"* "2 mod N = 1, so r divides x1 — x2. This implies that
the set of x € {0,1,...,M — 1} such that A* mod N = yp is an arithmetic progression
{zo,mo +r,zo+2r,..., 20+ (K — 1)r}, where xg < rand K = [(M —zo—1)/r] +1~ M/r.

So our state is equal to the following sum:
1
—(|zo) + |xo + 1) + cdots + |z + (K — 1)1)).

VK

Thinking of this state as a function) f(z)|z), the function f has a periodicity of r (i.e.
f(z+7r) = f(x) for most values of x € Z); - except possibly for values close to 0 or M). Since
the Quantum Fourier Transform allows us to sample the frequencies of a function, we should
be able to use it to recover the period r.

4. Apply the QFT to this sum and obtain:

1 = X T)T
3 (s)

This is since f(y) is 1/V/K for values y of the form z¢ + Ir and 0 elsewhere.

5. Measure and obtain x € Zj; with probability

K-1

Z wlr:p
=0

6. Find a,b € N such that |a/b—x/M| < 1/10M where ged(a,b) =1 and b < N. This can be
done classically with continued fractions and the pair a, b is unique.

2

1
KM

Compute A’ mod N and check if it is congruent to 1. If yes output b.

For analysis we claim that b = r with probability £2(1/log V). Thus repeating O(log N) times
and taking the smallest value of b obtained will yield ordy(A) with high probability. We will show
the simple case where r|M, the general case can be found in the Arora—Barak text.

In this case K = M/r, and we have:

Kz_lwlm _ JK xamultiple of M/r
0 otherwise

This holds because w is a primitive M’th root of unity: if is a multiple of M /r,then w"™ = 1, and
otherwise w"® is an M /r’th root of unity other than 1, so its powers will be spread out evenly on
the unit circle and cancel out.

This tells us that
K?/KM =1/r z a multiple of M/r

Pr [output = z] =)
0 otherwise

Therefore z is a uniformly random multiple of M /r, i.e. /M = ¢/r where ¢ is a random number
between 0 and r — 1. Note that if ¢ and r are relatively prime, then the pair (a,b) will have to be
(¢, r) and we’ll output r. The probability that ¢ and r are relatively prime is at least:

#(primes < r) — #(prime divisors of) S Q(r/logr) —logr — 0(1/10g7)

T T

This gives the desired probability of success.

