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1 Recap of Quantum Computation

• the state of an n-qubit register is given by:

φ =
∑

s∈{0,1}n
αs|s〉 ∈ C2n

,
∑
s

|αs|2 = 1

• starts in the state |x〉|0k〉|0m〉

• apply a sequence of local unitary operators, each on O(1) qubits.

• measure the final state
∑

s αs|s〉 and get s ∈ {0, 1}n+k+m with probability |αs|2.

• output the last m bits of s.

2 Quantum Fourier Transform

2.1 Discrete Fourier Transform

Take f : ZM → C and map to f̂ : ZM → C where below we assume that M = 2m.
The transform takes the form:

f̂(x) =
1√
M

∑
y∈ZM

f(y)ωxy, ω = e2πi/M

Now taking x ∈ ZM/2 define feven = f(x0), fodd = f(x1) where we are fixing the least significant
bit to separate even and odd inputs. As derived in the previous lecture it is possible to write f̂
recursively in terms of the odd and even parts as follows:

f̂(0x) = f̂even(x) + ωxf̂odd(x) (1)

f̂(1x) = f̂even(x)− ωxf̂odd(x) (2)

Using this recursive definition we can give the well known Fast Fourier Transform algorithm or
FFT:

1. Compute f̂even and f̂odd recursively.

2. Recombine according to the recurrence stated above.
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If the whole algorithm has (algebraic) complexity T (M), then the first step has complexity 2T (M/2)
and the second is O(M) since we need to do vector operations over vectors of length up to M .
Therefore T (M) = 2T (M/2) +O(M) which when solved gives us a complexity of O(M logM). In
the classical case this is provably optimal for algebraic circuits over C with bounded coefficients
(i.e. all constants have magnitude O(1), such as the roots of unity used above).

2.2 Quantum Fourier Transfrom

The Quantum Fourier Transform operates on an m = logM qubit state taking∑
x∈ZM

f(x)|x〉 7→
∑
x∈ZM

f̂(x)|x〉

Note that we do not get the values of f̂(x) explicitly. However, we can measure the transformed

state and get x with probability
∣∣∣f̂(x)

∣∣∣2, so this enables us to sample the frequencies of the function
f .

Note that the recurrences above imply that the QFT can be split into even and odd parts as
follows:∑

x∈ZM

f̂(x)|x〉 =
1√
2

∑
x∈ZM/2

[(
f̂even(x) + ωxf̂odd(x)

)
|0x〉+

(
f̂even(x)− ωxf̂odd(x)

)
|1x〉

]
Now similarly to the classical DFT we give a recursive algorithm for QFTM . We can use

quantum mechanics to enable us to use only one recursive call and hence to lower the complexity
from O(M logM) to O(log2M) = O(m2).

The algorithm is as follows:

1. Start with
∑

x∈ZM
f(x)|x〉 and rewrite as:∑

x∈ZM/2

(feven(x)|x0〉+ fodd(x)|x1〉)

2. Apply QFTM/2 to the first m− 1 qubits to obtain∑
x∈ZM/2

(
f̂even(x)|x0〉+ f̂odd(x)|x1〉

)

3. For j = 0, . . . ,m− 2 with |xb〉 = |xm−2 · · ·x0b〉, apply the following 2-qubit operation:

|xj〉|b〉 →

{
ω2j |xj〉|b〉 xj = b = 1
|xj〉|b〉 otherwise

Observe the effect of these m− 1 operations is the following:

|x0〉 7→ |x0〉

|x1〉 7→

 ∏
j:xj=1

ω2j

 |x1〉 = ωx|x1〉
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So our state now is: ∑
x∈ZM/2

[
f̂even(x)|x0〉+ ωxf̂odd(x)|x1〉

]
.

4. Apply the Hadamard gate to the last qubit to obtain state:

1√
2

∑
x∈ZM/2

[(
f̂even(x) + ωxf̂odd(x)

)
|x0〉+

(
f̂even(x)− ωxf̂odd(x)

)
|x1〉

]

5. Swap the least significant qubit and the most significant qubit to obtain state.

1√
2

∑
x∈ZM/2

[(
f̂even(x) + ωxf̂odd(x)

)
|0x〉+

(
f̂even(x)− ωxf̂odd(x)

)
|1x〉

]
=
∑
x∈ZM

f̂(x),

as desired

For the complexity of this algorithm 1 and 5 are free operations, 4 takes one gate, 3 takes m − 1
and 2 takes T (M/2) with total complexity given by T (M) = T (M/2) + logM . This expands to
O(log2M) as desired, making this algorithm polynomial in the number of bits.

3 Factoring on a Quantum Computer

We shall use without proof the known result that there is a classical, randomized reduction from
factoring to finding the order of a number modulo N . To define this problem more formally, consider
N and A ∈ Z∗N = {b ∈ {0, . . . , N − 1} | gcd(b,N) = 1} Then we want to find ordN (A) which is the
least 0 < x < N − 1 such that Ax ≡ 1 mod N .

Now we give a quantum algorithm for order finding given N,A. Let m = d5 logNe,M = 2m =
Θ(N5).

1. Generate the uniform superposition over ZM

1√
M

∑
x∈ZM

|x〉

by applying the Hadamard gate m times.

2. Use classical modular arithmetic to send each |x〉|0〉 7→ |x〉|Ax mod N〉

3. Measure to obtain y0 ∈ Z∗N from each Ax mod N leaving the state as follows:

1√
K

∑
x∈ZM :Ax mod N=y0

|x〉|y0〉

where K = #{x |Ax mod N = y0}. Notice that if Ax mod N = y0, then we also have
Ax+r mod N = y0 and Ax−r mod N = y0 where r = ordN (A). Conversely, if Ax1 mod N = y0

and Ax2 mod N = y0, then Ax1−x2 mod N = 1, so r divides x1 − x2. This implies that
the set of x ∈ {0, 1, . . . ,M − 1} such that Ax mod N = y0 is an arithmetic progression
{x0, x0 + r, x0 + 2r, . . . , x0 + (K − 1)r}, where x0 < r and K = b(M − x0 − 1)/rc+ 1 ≈M/r.
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So our state is equal to the following sum:

1√
K

(|x0〉+ |x0 + r〉+ cdots+ |x0 + (K − 1)r〉).

Thinking of this state as a function
∑

x f(x)|x〉, the function f has a periodicity of r (i.e.
f(x+r) = f(x) for most values of x ∈ ZM - except possibly for values close to 0 or M). Since
the Quantum Fourier Transform allows us to sample the frequencies of a function, we should
be able to use it to recover the period r.

4. Apply the QFT to this sum and obtain:

∑
x

(
1√
KM

K−1∑
l=0

ω(x0+lr)x

)
|x〉

This is since f(y) is 1/
√
K for values y of the form x0 + lr and 0 elsewhere.

5. Measure and obtain x ∈ ZM with probability

1
KM

∣∣∣∣∣
K−1∑
l=0

ωlrx

∣∣∣∣∣
2

6. Find a, b ∈ N such that |a/b− x/M | < 1/10M where gcd(a, b) = 1 and b < N . This can be
done classically with continued fractions and the pair a, b is unique.

Compute Ab mod N and check if it is congruent to 1. If yes output b.

For analysis we claim that b = r with probability Ω(1/ logN). Thus repeating O(logN) times
and taking the smallest value of b obtained will yield ordN (A) with high probability. We will show
the simple case where r|M , the general case can be found in the Arora–Barak text.

In this case K = M/r, and we have:

K−1∑
x=0

ωlrx =

{
K x a multiple of M/r

0 otherwise

This holds because ω is a primitive M ’th root of unity: if x is a multiple of M/r,then ωrx = 1, and
otherwise ωrx is an M/r’th root of unity other than 1, so its powers will be spread out evenly on
the unit circle and cancel out.

This tells us that

Pr [output = x] =

{
K2/KM = 1/r x a multiple of M/r

0 otherwise

Therefore x is a uniformly random multiple of M/r, i.e. x/M = c/r where c is a random number
between 0 and r − 1. Note that if c and r are relatively prime, then the pair (a, b) will have to be
(c, r) and we’ll output r. The probability that c and r are relatively prime is at least:

#(primes < r)−#(prime divisors of r)
r

≥ Ω(r/ log r)− log r
r

= Ω(1/ log r)

This gives the desired probability of success.
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