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1 Agenda

• P-/NP- Completeness

• NP-intermediate problems

• NP vs. co-NP

• L, NL

2 Recap

Last time, we ended with Turing Machine simulation by boolean circuits (with fan-in 2 using and,
or, not gates) and saw the following theorem:

Theorem 1 Let M be a time t(n) TM, such that dlog t(n)e is space-constructible. Then there
exists a sequence C1, C2, ... of boolean circuits such that the following properties hold:

1. Each circuit agrees with M on inputs of length equal to its index, i.e. ∀n, ∀x ∈ {0, 1}n, Cn(x) =
M(x).

2. The circuits are polynomially bounded in size (number of gates), i.e. |Cn| ≤ poly(t(n)).

3. (log-space-uniformity) There exists a log-space (space O(log t(n))) TM M ′ constructing the
circuits, i.e. such that ∀n,M ′(1n) = bCnc.

3 P-/NP- Completeness with Circuits

Now, we examine P and NP in the framework of circuits.

3.1 P as Circuits

Corollary 2 The set of languages decidable by log-space-uniform families of polynomially-sized
boolean circuits is equal to P.

Proof:
(⊇) Follows from Theorem 1.
(⊆) Given a family of circuits and an input, we can use log-space-uniformity to construct the

appropriate circuit, and evaluate it gate by gate, both in poly-time.
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So, one approach to the P vs NP problem is to prove that some NP problem requires super-
polynomial-sized circuits to decide it, which by Corollary 2 would show P 6= NP. Intuitively,
circuits seem easier to reason about than Turing Machines, and historically there was a lot of
excitement around this approach. Unfortunately, proving lower bounds on the number of gates
needed in a circuit is hard, and the best known bound for an NP problem is something like
5n. Any super-linear lower bound would be a major breakthrough. It is currently believed that
even without the assumption of uniformity, NP-complete problems that require super-polynomial
circuits.

Theorem 3 The following language is P-complete with respect to ≤l:
Circuit Value = {〈C, x〉 : C(x) = 1}.
Recall that ≤l refers to log-space reduction; note that using poly-time reductions, anything in P

is P-complete.

Proof:
(∈ P) The circuit can be evaluated in the input in time polynomial in the circuit size.
(P-hard) Given a language L ∈ P, let M be a poly-time TM deciding L. Apply Theorem 1

to get a family {Cn} of circuits, and then use log-space-uniformity to get a log-space reduction to
Circuit Value since x ∈ L⇔M(x) = 1⇔ C|x|(x) = 1⇔ 〈C|x|, x〉 ∈ Circuit Value.

3.2 Other P-complete problems

• Linear Programming (see Problem Set 1).

• Max-flow.

As a corollary to Theorem 3, one can show that if any of these problems is in L, then P = L.
The same can be said of other complexity classes within P. If any of these can be efficiently
parallelized, then so can all of P.

3.3 Circuit Satisfiability

Theorem 4 The following language is NP-complete with respect to ≤l:
Circuit Satisfiability = {C : ∃x : C(x) = 1}.

Proof:
(∈ NP) The satisfying assignment serves as witness.
(NP-hard) Given a language L ∈ NP, let M be a poly-time verifier for L. Apply Theorem 3

to the verifier to get a family {Cn} of circuits such that Cn+p(n)(x, u) = M(x, u), where n = |x|
(and maybe off by a couple for divider between the pair). Then, given an input x, we can use log-
space-uniformity to compute Cn+p(n), fix x in the circuit to get a new circuit Cx(·) = Cn+p(n)(x, ·),
and output Cx. Noting that x ∈ L⇔ M accepts ⇔ Cx is satisfiable, we get a log-space reduction
of L to Circuit Satisfiability as desired.

Theorem 5 3SAT is NP-complete.
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Proof:
(∈ NP) A satisfying assignment serves as witness.
(NP-hard) We reduce Circuit Satisfiability to 3SAT. Given a circuit C with inputs

x1, ..., xn and m gates, we will construct a 3-CNF formula φ that is satisfiable iff the circuit is.
To do this, we introduce variables g1, ..., gm for the m gates of C. Then for each gate with inputs
(x, y) and output z (where the inputs can be x’s or g’s), we add a term for each assignment to
(x, y, z) that is not consistent with the gate operation. For example, if the gate is an OR gate,
then the term x∨ y∨¬z ensures that (x, y, z) = (0, 0, 1) will not satisfy φ. The general fact at play
here is that any function on k variables can be written as a k-CNF formula using one clause for
each unsatisfying assignment. Finally, we take the conjunction of the output value gm with all of
these terms so that the formula is satisfiable if and only if there is a valid execution of the circuit
resulting in the output gm = 1, as desired.

Note that we have not claimed 3SAT is as powerful as a Turing Machine (false), but rather
that a 3SAT instance can verify the computations of a boolean circuit or Turing Machine. The
intuition is that the freedom introduced by the new variables g when finding a witness makes it
simpler to verify solutions.

4 NP-intermediate Problems

Under the assumption that P 6= NP, one might question whether there are languages in NP that
are neither in P nor NP-complete.

4.1 Ladner’s Theorem

Theorem 6 (Ladner’s Theorem) If P 6= NP, then there exists a language L ∈ NP such that
L /∈ P and L is not NP-complete. We call such languages NP-intermediate languages.

Proof: We omit the proof here; see Arora-Barak. The basic idea is to start with L0 ∈ NP \ P ,
and then obtain L by blowing large “holes” in L0 (i.e. throwing out large intervals of strings).
Each hole serves to rule out one polynomial-time reduction from SAT to L0, and each gap between
the holes serves to rule out one polynomial-time algorithm for L. This is possible by taking the
holes and the gaps to be sufficiently large. To ensure that L remains in NP, lazy diagonalization
is used. See also Problem Set 1 & section for other evidence for the existence of NP-intermediate
problems.

4.2 Natural candidates for NP-intermediateness

• Factoring integers (see PS1).

• Finding Nash equilibria, e.g. in bimatrix games.

• Anything in (NP ∩ co-NP) \P.

• TFNP - total search problems; subclass PPAD of fixed-point problems (including finding
Nash equilibria).

• BQP.
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• SZK.

• Lots more.

Proposition 7 If there exists some language L ∈ NP ∩ co-NP that is NP-hard with respect to
Cook reduction (i.e. poly-time given an L-oracle), then NP = co-NP. (Common belief is that
NP 6= co-NP, so there is probably no NP-hard language in NP ∩ co-NP.)

5 NP vs. co-NP

Claim 8 NP = co-NP iff all boolean propositions have poly-sized proofs of validity, with respect
to some poly-time checkable proof system.

Proof Sketch: Tautologies is in co-NP, and NP languages allow for poly-time verifiable proofs
of membership. �

The study of Proof Complexity approaches NP vs. co-NP by attempting to find tautologies
that have a provably super-polynomial lower bound for proof length in natural proof systems; this
has been successful for relatively weak proof systems (like Resolution) but elusive for stronger
systems (like Frege, or Zermelo-Frankel Set Theory). The intuition is that we can’t have poly-sized
certificates for exponentially many inputs. Proof Complexity is a very active area of research that
we unfortunately will not have time to say more about.

6 Space Complexity: L=Log-space

6.1 Review

• We only count the number of cells used on work tapes. Input/output are read/write only,
respectively

• L = SPACE(log n)

• L ∈ P, since the number of configurations of an L-space machine is at most polynomial.

6.2 Why study L?

• L is a natural point at which nontrivial algorithms exist, such as +, ·, ÷, and undirected
connectivity (UPATH). The latter two are nontrivial and were discovered in the last 5 years.

• Massive datasets can’t be held in memory. For this, people use even more restricted models,
like log-space streaming and k-pass algorithms.

• L is closely related to parallel computation.

• But, NP = L is not ruled out.
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6.3 Addition in L

In log-space, we can store pointers to input/output by maintaining the index of a given digit.
Addition can be computed one digit at a time by maintaining pointers to the current input/output
as well as a carry bit at each step. We print the digits from left to right, starting with the least
significant bit.

What if we wanted to print the output of addition in reverse order? We can’t just reverse the
output, because the length can be n or n + 1, where n is the length of the summands. To get
around this, we run the entire addition process without outputting anything except the last (most
significant) bit, and then repeat the addition process for each other bit (stopping each addition
when we get the bit needed at that step). This algorithm suggests the general result that follows:

6.4 Closure of L under composition

Proposition 9 If f1, f2 are computable in log-space, then so is f2 ◦ f1.

Proof: Note that we can’t simply write the output of f1 to a work tape, because the output
may be polynomial while the tape is constrained to logarithmic size. The intuition is that as for
reversed addition, we compute each output bit of f1 as f2 actually needs to read it.

Slightly more formally, we maintain an input pointer for f2, and each time it wants to read a
value, we simulate f1 (without printing) until its output head matches f2’s input head, at which
point we print that bit and continue executing f2. This can be thought of as a ”virtual tape” for
the input to f2, where each input bit is printed as it is needed for access.

Using this model, we can effectively run f2 on the output of f1 while printing only one bit at a
time of f1’s output onto the work tape.

Corollary 10 Log-space reductions are transitive.

Corollary 11 A ≤l B,B ∈ L⇒ A ∈ L.

7 NL

Next, we look at nondeterministic log-space.

Theorem 12 The following language is NL-complete:
PATH = {〈G, s, t〉 : G is a directed graph with an s→ t path}.

Proof:
Note that the undirected version of this language is in L.
(∈ NL) Let v = s, repeatedly (up to n times) replace v with a nondeterministically chosen one

of its neighbors, and halt/accept if v = t. Space required is O(log n) to remember v and a counter
for the loop.

(NL-hard) Next time - think about it!

5



8 Next Time

• Finish proof of Theorem 12.

• Consequences: proving things about NL by reasoning about PATH.

• NL = co-NL.

• NPSPACE = PSPACE.

6


