
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 6

Feb 10, 2010 Scribe: Rebecca A. Resnick

Agenda:
PSPACE
Alternation
PH
Time-Space tradeoffs for SAT.

1 TQBF

Consider the language of True Quantified Boolean Formulas (TQBF), i.e. TQBF = {true
statements ∃x1 ∈ {0, 1}n1∀x2 ∈ {0, 1}n2 . . .Qmxm ∈ {0, 1}nmφ(x1, . . . xm) where φ is a 3-CNF
formula}.

Theorem 1 TQBF is PSPACE-complete wrt ≤Cook

Proof: By the following 3 lemmas:

Lemma 2 TQBF ∈ PSPACE

Proof: 2-word proof: Recursive evaluation. Try x1 = 0 and x1 = 1, see if remaining formula
is satisfiable. Actually a SPACE(n) algorithm, because depth of recursion is number of elements
you have to try.

Lemma 3 PSPACE ∈ AP, “alternating PSPACE”

First, a few definitions: An alternating TM (ATM) is like an NTM except each state is
labeled as either ∃ or ∀.

Some notes:

1. Running time: maximum length computation path as a function of the input length (just like
NTM)

2. Acceptance condition on x (see figure below). Nodes of the computation tree are defined to
be accepting or rejecting recursively:

(a) leaf: is configuration accepting or rejecting?

(b) ∃: accepting if at least one child is accepting

(c) ∀: accepting if all children are accepting

(d) Computation accepts ⇐⇒ start configuration on x is accepting.

1

3. (NTMs = ATMs with only ∃ nodes)

4. ATIME(t(n)) and AP are defined in natural way, i,e:

AP =
⋃
k

ATIME(nk)

Comment from the audience: This seems like a boolean circuit with AND/OR gates. Answer: You never
have construct entire tree with an ATM; you only care about the runtime of a particular path (whereas in
Boolean circuits the main complexity measure is size of the entire circuit, though depth is also considered).
Also note that the “leaves” here are not bits of the ATM’s inputs, but whether or not the ATM accepts
or rejects at the end of a particular computation path. Compare with standard non-determinism: an ATM
with ONLY existential nodes. Nevertheless, the similarity between the two models can be exploited - people
have used results about boolean circuits to prove results about the power of ATM’s “relative to oracles.”

Now proceed with pf of lemma.

Proof of Lemma 3: Given L decided by a PSPACE algorithm M , we will give an AP algorithm
for ReachGM,x

(u, v, i). GM,x is the configuration graph of M on x. (Since M is deterministic, GM,x

is really just a path.) i ∈ {1, . . . 2poly(n). ReachGM,x
(u, v, i) = 1 if there exists a path u → v in

GM,x of ≤ i steps.

AP algorithm to compute ReachGM,x
(u, v, i): Base cases: left to the reader.

∃: nondeterministically guess a configuration w.
∀: Check both ReachGM,x

(u,w, di/2e) and ReachGM,x
(w, v, bi/2c).

Running time is depth of tree, which is polynomial because i is shrinking by half at each step

Lemma 4 TQBF is AP-hard.

Proof: L ∈ AP ⇐⇒ ∃ poly-time M , polynomials q, r, such that

x ∈ L ⇐⇒ ∃u1∀u2 . . . Qrur(M(x, u1, . . . , ur)), ui ∈ {0, 1}q(|r|).

By Cook-Levin, we can convert M(x, u1, . . . ur) to a 3-CNF, ∃zφM,x(u1, . . . , ur, z), where φM,x

is constructed from M,x in logspace

This concludes the proof that TQBF is PSPACE-complete wrt ≤l

Corollary 5 (“alternating time equals space”) PSPACE = AP

Fact 6 (“alternating space equals exponentially more time”) AL = P and, APSPACE =
EXP

Corollary 7 ∃ε > 0 such that TQBF 6∈ SPACE(nε) (suffices to take ε ≤ .49)

Proof: By the Space Hierarchy Thm there exists some language L solvable in linear space, but
NOT solvable in sub-linear space. Since TQBF is PSPACE complete, L reduces to TQBF in
logspace, so if TQBF ∈ SPACE(nε), then L ∈ SPACE((nc)ε + log(n)). If ε < 1/c, we have a
contradiction.

2

2 Polynomial Hierarchy

Define ΣkTIME(t(n)) = { languages decided by ATMs with ≤ k − 1 alternations between ∃ and
∀ on each computation path, time ≤ t(n), starting with ∃}, and

ΠkTIME(t(n)) = { languages decided by ATMs with ≤ k− 1 alternations between ∃ and ∀ on
each computation path, time ≤ t(n), starting with ∀}. Also define

Σp
k =

⋃
c

ΣkTIME(nc),

Σp
k =

⋃
c

ΠkTIME(nc).

2.1 Motivation

1. Natural Problems (at low levels):

Circuit Minimization = {〈C, k〉 : ∃C ′(|C ′| ≤ k ∧ ∀xC ′(x) = C(x)}.

2. PH = class of languages L for which we currently know how to prove that if P = NP, then
L ∈ P.

3. Useful for lower bounds on NP. e.g PH 6= P⇒ NP 6= P (later),

also, known: Σ4TIME(n) 6= DTIME(n) and thus, NTIME(n) 6= DTIME(n).

3 Alternating Characterizations

1. L ∈ Σp
k ⇐⇒ ∃ polynomial q, poly-timeM such that x ∈ L ⇐⇒ ∃u1∀u2 . . . QkukM(x, u1, . . . uk),

ui ∈ {0, 1}q(|x|)

2. ΣkSAT = {∃x1∀x2 . . . Qkxkφ(x1, . . . xk)} is Σp
k-complete. φ is a 3-CNF if Qk = ∃, 3-DNF if

Qk = ∀.

Theorem 8 1. P = NP⇒ PH = P

2. Σp
k = Πp

k → P = Σp
k = Πp

k (conjectured to be false)

Proof:

1. Assume P = NP. Let L ∈ Σp
k. By first characterization, there exists a poly-time M0 such

that x ∈ L ⇐⇒ ∃u1∀u2 . . . ∀kukM0(x, u1, . . . uk), ui ∈ {0, 1}q(|x|).
Since P = NP, intuitively, we can replace statements that have 1 quantifier with quanti-
fierless statements. In particular since ∀kukM0(x, u1, . . . uk) ∈ co-NP = P we can replace
∀kukM0(x, u1, . . . uk) with M1(x, u1, . . . uk−1), where M1 is an NP-time algorithm. Repeating
this step k − 1 more times, we get x ∈ L ⇐⇒ Mk(x) = 1

2. On problem set 2.

3

Remark 9 1. Suppose NTIME(n) ⊆ DTIME(f(n))→ ΣkTIME(t(n)) ⊆ TIME(f(f . . . f(t(n)) . . .)).
Eg f(n) = n2 ⇒ DTIME(t(n)2

k
) but if f(n) = n1+o(1) ⇒ DTIME(t(n)1+o(1)).

2. Above shows that SAT ∈ P⇒ ΣkSAT ∈ P. But we haven’t given a reduction from ΣkSAT
to SAT! Indeed, it can be shown that if there were a Cook reduction from ΣkSAT to SAT,
then the PH collapses to PNP = ∆p

1 .

4

