CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 7

February 10, 2010 Scribe: Kyu Bok Lee

1 Agenda
e PH via oracles

e Time-Space Tradeoffs for SAT

2 Oracle TMs

Definition 1 An oracle TM M is a TM with a special (write-only) oracle query tape, a (read-only)
oracle answer tape, and an oracle query state.

When M is run with an oracle O : {0,1}* — {0,1}* and goes into an oracle query state with
q € {0,1}* on its query tape, then O(q) appears on the answer tape in 1 step.

Similarly, we can define oracle NTMs, coNTMs, ATMs,. ..

We can define new complexity classes given an oracle @: PO, NP, co-NP?, etc.

Remark 2 We have P© = {L C {0,1}* : L <¢ O} since Cook reductions by definition are
performed in deterministic polynomial time.

Remark 3 For a class C of functions or oracles, we note P¢ = Uoee PO = P9 where O* is any
complete problem for C (even under <¢). And we define Ay, = Pk,

ZP
Theorem 4 2ﬁ+1 = NP>k,

Proof: We first show Eﬁ_ﬂ - NPZk. Given L € EE+1, there exists a polynomial time M such
that
r €L << Ju;Vus... Qk+1uk+1, M(x, Uy .- ,uk+1),

where the length of each u; is bounded by some fixed polynomial. Define a new language L’ which
is in Hﬁ:

L' = {(z,w1) : YugIug . .. Qpy1tpr1, M(z,ur,. .., ups1)} € IIL.
We can easily give an NPV algorithm for L:

e Nondeterministically guess ;.

e Ask oracle (z,u;) € L', and accept/reject accordingly.

Now we show the inclusion in the other direction: NPZk - EE 41
Given L € NPk, decided by some oracle NTM M (using an oracle L' € P), our first attempt at

¥, algorithm for L may be the following:
e Simulate M by using the first 3 for M’s nondeterminism.
e Use remaining k quantifiers for queries to L.

The problem with this approach is that we can run out of quantifiers for answering the first query.
The correct X} 41 simulation on input z is the following (by observing that M can make at most
polynomially many queries to L'):

e We can guess all of M’s nondeterministic choices ¢y, ..., ¢y, the correct sequence of queries
q1,---,qk, and the answers ai,...,ar € {0,1} using a single 3. (There are polynomially
many.)

e Now we can verify that M (z) would make the queries ¢, . . ., ¢ given nondeterministic choices
c1,...,Cn and answers ay, ..., a;.

e Next we can verify that L'(¢;) = a; for i = 1,...,t using the remaining k alternations (in

parallel for all 7).

Our claim follows. []
Corollary 5 3P | = NP = NPZSAT — NpIk

Proof Sketch: We can just flip the answer of the oracles. O

3 Time-Space Tradeoffs
Definition 6
TISP(T(n),S(n)) :={L : L decided by TMs running in time O(T(n)) and space O(S(n))}.
Theorem 7 For all e > 0, SAT ¢ TISP(n'to() pl—e).
Remark 8 The above result also holds on a RAM model.

Lemma 9 For all ¢ > 0, TISP(T' () T1-¢) C S, TIME(T'~¢") provided &' < /2.
Here T =T(n) and T(n)'~¢ > n (time-constructible).

Proof of Lemma: The proof is similar to the proof of the result PSPACE C AP.
Given M running in TISP(T't°(M) 71=¢), B, TIME simulation on M will work as follows:

e 3 guesses a sequence of configurations C1, ..., Cpe/2. (takes time Te/2. 1< < Tlf‘?/)
e V,; verifies that C; — (41 runs within T 1-¢ steps and that Cyp./. is accepting. (takes time

Tl—s')
|

Proof of Theorem 7: Suppose SAT € TISP(n!'*°(M) n!=¢). This implies NTIME(n) C
TISP(n!t°M n!=¢") since NTIME(n) reduces to SAT by reduction that runs in time O(nlogn)
and space O(logn). Now by translation, we get the first line of inclusion below

1

DTIME(n?) C NTIME(n?) C TISP(n?t°() p2=¢")
C 3, TIME(n>~") (by Lemma)
C DTIME(n?>~¢")

The second inclusion is established by the lemma above. The third inclusion follows from
NTIME(n) C DTIME(f(n)) = X, TIME(t(n)) C DTIME(f® (t(n)))

and f(n) =n'to) — f(f(n)) = nito®),

This contradicts the time hierarchy theorem! |

