CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 8

February 19, 2010 Scribe: Kevin Lee

1 Agenda

1. Provably Intractable Problems

2 Provably Intractable Problems

Some lower bounds that we proved so far:

1. Hierarchy theorems give us unnatural problems that do not exist in certain complexity classes.
These give us "unnatural“ problems in EXP\DTIME(2") or PSPACE\SPACE(n).

2. Jde > 0 such that TQBF ¢ SPACE(n).
3. Ve > 0 we have that SAT ¢ TISP(n'to() nl-e).

We want to find some more natural problems that require superpolynomial time. We can do this
by finding “natural” complete problems for classes at the exponential level (like EXP, NEXP,
EXPSPACE). Often these will be “concise” versions of problems complete for classes at the
polynomial level (like P, NP, PSPACE). We begin with a survey of some results of this type,
and then work out one example in detail.

3 Variants of Bounded Halting

To find some natural problems, we consider variations of the bounded halting problem:
1. {<M, x, 1t> : M accepts x within ¢ steps} we know to be P-complete.
2. {{M,x,t) : M accepts = within ¢ steps} turns out to be EXP-complete.
3. {<M, 1t> : dx, M accepts x within ¢ steps} we know to be NP-complete.
4. {{(M,t) : Jxr, M accepts x within ¢ steps} turns out to be NEXP-complete.

Thus by writing the time bound more concisely — in binary instead of unary — the complexity
goes up an exponential.

This phenomenon is like the converse of what we saw with translation/padding arguments.
There we could take a problem at the exponential level, and by making the input representation
less concise via padding, get a problem at the polynomial level. However, note that the polynomial-
level versions of bounded halting are not quite the same as exponentially-padded versions of the
exponential-level ones, because the description of M can be linear in the length of the input, whereas

in an exponentially padded instance, all but a small portion of the input has no information content.
Indeed, it is unlikely that any exponentially padded problem is NP-complete (similar to the way
no sparse language can be NP-complete).

4 Implicit Problems

4.1 ImpLiCIT HAMILTONIAN CYCLE

A Hamiltonian cycle on a directed graph is a cycle that visits each vertex exactly once. Deciding
whether an explicitly given graph has a Hamiltonian cycle is known to be NP-complete. We can
consider the same problem on a graph described implicitly by a circuit

C:{0,1}" x {0,1}" — {0,1}

Which takes a pair of vertices and returns 1 iff they are connected in the graph. Formally, the
graph described by C' is defined as

G =({0,1}" ,{(u,v) : C(u,v) =1})
The ImpPLICIT HAMILTONIAN CYCLE problem is the language
L = {C : C describes a graph with a Hamiltonian cycle} .

This turns out to be NEXP-complete. It can be proven in a similar way to the standard NP-
completeness reduction from CIRCUIT SATISFIABILITYto HAMILTONIAN CYCLE, applied to the
ImpLICcIT CIRCUIT SAT problem, described next.

4.2 ImpLiCcIT CIRCUIT SAT

Similarly, we can define IMPLICIT CIRCUIT SAT as the language with
{C’ : C describes a circuit C’ that is satisﬁable}

We can describe a circuit by defining the function C(i, j, k) which corresponds to whether gate k
in C’ have gates i, j as inputs and with what operation. Note that C’ is of size exponential in the
input length of C.

Theorem 1 IMmpLICIT CIRCUIT SAT is NEXP-complete.

Proof Sketch: Similar to Cook-Levin (the theorem that shows the NP-completeness of CIRCUIT
SATISFIABILITY). The circuit C’(-) should simulate the verifier M(z,-) for the NEXP language
with z hardwired in. Even though C’ is now exponentially large, it is highly regular (consisting of
mainly of many copies of the same constant-sized circuit), and thus can be described by a poly(n)-
sized circuit C. O

In general, implicit versions of problems complete at the polynomial level tend to be complete
at the exponential level. However, these problems (as well as the Bounded Halting problems) are
not as natural as we would like, as they still make explicit reference to computation. In the next
section, we’ll see a problem where “conciseness” can be achieved in a natural problem with no
explicit reference to computation.

5 Regular Expressions with Exponentiation

Regular expressions are patterns that match strings. Regular expressions with exponentiation (or
equivalently just squaring) are regular expressions where symbols or strings can be repeated an
arbitrary number n of times using an exponentiation operator that we sometimes denote T n and
sometimes denote using a superscript of n. For example, the expression

R=(aUb)*o(cUe) T (100) = (aUD)* o (cUe)'™
generates the language:
L (R) = {any string formed with a’s and b’s followed by < 100 c’s}

Formally, L(R) for regular expressions R with exponentiation are defined recursively. Starting
with the base cases

L(e)={e} L(o) ={a} L(0) =0

with the inductive rules
L (Rl U Rz) =1L (Rl) UL (RQ)

L(R*) :L(R)* = {x1x2~-a?k k>0,x; € L(R)}
L(R")=L(R)" ={x1x9---xy:x; € L(R)}
L(RyoRy) ={x1w2: 21 € L(Ry),22 € L(R2)}

Any occurrence of exponentiation can of course be eliminated by expanding it into concatena-
tion, but this will incur a size blow-up that is exponential in the bitlength of the exponent. Thus
exponentiation is a source of “conciseness’ in this problem.

6 ALLREXT

The problem we are interested in is
ALLgrgxt = {R : R is a regular expression with exponentiation such that L (R) = ¥*}

Theorem 2 ALLggxt is EXPSPACE-complete under logspace mapping reductions. It is even
complete for SPACE (20(")) under linear-time, logspace reductions.

Corollary 3 ALLggxy cannot be solved in space (or time) 2", for some constant e > 0.

Proof ALLrext € EXPSPACE: We can decide ALLgrgxt of a regular expression R of length
n by

1. Convert the exponents into concatenations. This results in a size blowup to N < 2",

2. Convert to NFA in the obvious way. This only requires linear space on N.

90(N)

3. Convert to a DFA. This could require up to states.

4. Check that no reject states are reachable. By Savitch’s theorem, this takes space O (N 2) on
a graph of size 20V).

Note that 2°) is too much space. However, we don’t need to store the entire DFA in memory, so
we use the usual trick of composing space bounded algorithms to deal with this. |

Proof ALLrgx; is EXPSPACE-hard: Given a language L decided by TM M using space
2”k, we’ll give a logspace mapping w — R such that

L (R) = {Strings that do not represent rejecting computations of M on w}

Note that this is logically equivalent because all strings are not rejecting computations of M on
w iff M does not have a rejecting computation. WLOG we assume that M is a 1-tape Turing
machine.

We represent computations as Cy#Cy# - - - #C; where the C;’s are configurations (described by
the contents of M’s tape, with M’s state written immediately preceding the current symbol being
read) and # character is a delimeter between the configurations. Thus the computation history is
a string over the alphabet A = I'U Q U {#}, where I is the tape alphabet of M and @ is the set
of states of M. WLOG we may assume that all configurations are of length exactly on*

In order to have a valid reject computation, we must start with the start state, have a valid
transition to the next configuration, and end at a reject state. Thus, all strings that do not represent
rejecting computations can be represented by the regular expression

R= Rbad—start U Rbad—window U Rbad—reject

For Rpadstart; We note that at least one of the symbols in the start configuration must be
incorrect. So if the expected start configuration is

q0w1w2"'wnuu"'u

Then we can generate

nk nk
Rbadestart = Ao A" UATA_, ATUAZA_, A* - UAMH (AUe)? T 2A_ATUAY A AT

Where A represents the union of all possible symbols and A_, represents the union of all possible
symbols except for a. Most of the expressions match strings that have the wrong character in a
particular place, and the second to last expression matches strings where one of the tail characters
is not a blank.

Strings that do not reject the input are simply strings that do not contain the reject state.
Thus,

*

Rbad—reject = A—Qreject

Finally, in order to obtain Rpad-window We Observe that we can figure out whether a transition
is valid or not simply by looking at three consecutive symbols in each configuration, since we just
need to know the value under the head, the to the left of the head, and to the right of the head.

Thus,
nk
Rbad—window = U A*abCA2 72d€fA*7
bad(abe,def)

where bad(abc, def) means that having abc in one configuration is inconsistent with having def in
same positions of the next configuration, according to the transition function of the TM M.

Note that the total length of R is dependent on the exponents in it, since everything else remains
constant with regard to the length of x. The largest exponents are Z"k, so the length of R is O (nk),
which is polynomial in n. |

7 Variations of ALLRrgx

What happens when we allow or disallow exponentiation and starring?

1 -1
* | EXPSPACE-complete | PSPACE-complete
—% coNEXP-complete coNP-complete

Above the results without * actually refer to the equivalence problem for regular expressions
(deciding whether L(R;) = L(R2)) since a regular expression without * can’t possibly generate all

strings.
Note that in both rows we see that the exponentiation operator increases the complexity by an

exponential.

