
CS 221: Computational Complexity Prof. Salil Vadhan

Lecture Notes 9

March 1, 2010 Scribe: Önder Eker

1 Agenda

• Relativization

• Circuit Complexity

• P/poly

• Karp-Lipton Theorem

2 Recap

Lower bounds so far:

TQBF /∈ SPACE(nε), SAT /∈ TISP(n1+o(1), n1−ε), ALLREX↑ /∈ SPACE(o(2n))

All of these proofs were based on diagonalization, sometimes combined with nontrivial simula-
tions of one resource by others (such as the simulation of TISP by Σ2TIME). Finally, we use
completeness to deduce a lower bound for a natural problem, but in all cases this was done, or
could be done, as a final step in the proof.

In the next section, we ask whether such an approach can resolve P vs. NP.

3 Relativization

The key observation is that all of the diagonalization and simulation arguments we have done so
far hold in the presence of an arbitrary oracle. (Sometimes we have presented these arguments
using specific complete problems, eg the way we used PATH to Savitch’s Theorem, but they can
actually be done directly, e.g. using the configuration graph.)

The next theorem states that using techniques that hold relative to an oracle can’t resolve P
vs. NP.

Theorem 1 There exist oracles A, B : {0, 1}∗ → {0, 1} such that

1. PA = NPB

2. PA 6= NPB

1



This phenomenon was new in complexity theory compared to recursion/computability theory,
where almost all results relativize — hold relative to an arbitrary oracle. The initial expectation was
that recursion-theoretic methods, such as sophisticated diagonalization arguments, could resolve P
vs. NP. The above theorem provides a dramatic explanation of why it wouldn’t work.

Proof:

1. The proof is based on the fact that, for space-bounded computation, there is not much gap
between deterministic and nondeterministic computation. We take A = TQBF.

NPTQBF ⊆ NPSPACE = PSPACE ⊆ PTQBF ⊆ NPTQBF

This holds because,

NPTQBF ⊆ NPSPACE : running NP with oracles calls takes poly space.

NPSPACE = PSPACE : Savitch’s theorem.

PSPACE ⊆ PTQBF : TQBF is PSPACE-complete. Any PSPACE problem can be
reduced in poly space to one oracle call to TQBF.

Side Remark: (response to question) Taking A = SAT doesn’t work. With this choice,
NPA = Σp

2 and PA = ∆p
2 . If they are equal, PH collapses.

Σp
2 Πp

2

NP

∆p
2vvv

vvv

co-NP

∆p
2HHH

HHH

2. We will find a language B such that

UB = {1n : ∃x ∈ {0, 1}n, B(x) = 1} ∈ NPB\PB

Note that for every oracle B, UB ∈ NPB because the witness for membership is just the
x for which the oracle says yes. We design the oracle such that no polynomial time algo-
rithm can decide the language. This should not be too difficult since there are exponentially
many choices and the machine can only look at the oracle in polynomially number of places.
There is no resource constraint for the oracle B. We construct B by diagonalization. Let
M1, M2, M3, . . . be an enumeration of all oracle TMs running up to time 2n/2. The iteration
proceeds by showing that on some inputs M1 with oracle B doesn’t decide UB correctly. Once
we have shown for Mi, we can pick some more inputs for Mi+1 and so on. Pseudocode on the
next page ensures that 1ni /∈MB

i .

Remark 2 Completeness of a particular problem is not a statement that holds relative to an
oracle. However, as mentioned above, so far we have not used completeness in a fundamental way
for lower bounds - it can always be pushed to the end of the argument.

2



for i = 1, 2, 3, . . . do
idea: Fix B on finitely many inputs to ensure L(MB

i ) 6= UB

Pick ni s.t. we haven’t fixed B on any input of length ni yet.
for all query q in the simulation of MB

i (1ni) do
if B(q) already determined then

Answer B(q)
else

Fix B(q) = 0, and answer 0.
end if

end for
There must be some input of length ni that MB

i (1ni) hasn’t queried (since MB
i (1ni) runs in

time less than 2ni).
for all q that MB

i (1ni) hasn’t queried do
Fix B(q) = ¬MB

i (1ni)
end for
⇒MB

i (1ni) 6= UB(1ni)
end for

Remark 3 Most open questions about complexity classes are known to not have relativizing an-
swers. In addition to P vs. NP, these include P vs. PSPACE and whether PH collapses. But
we do have some nonrelativizing results such as IP = PSPACE (interactive proof system), PCP
theorem (probabilistically checkable proof), MAEXP * P/poly (MAEXP is a randomized analogue
of NEXP).

Remark 4 We shouldn’t be overly pessimistic and shouldn’t interpret nonrelativization as limita-
tions of current techniques but see it as a guide for what might or might not work.

4 Circuit Complexity

One approach to get around the relativization barrier for proving P 6= NP is to use circuit com-
plexity.

4.1 Definitions

Recall:

Definition 5 A boolean circuit C : {0, 1}n → {0, 1}m has

• n sources (input nodes), m sinks (output nodes)

• some computation nodes (gates) labeled by functions {0, 1}indegree(v) → {0, 1}

• size = number of nodes

• fan-in k = max indegree. Usually k = 2.

3



Definition 6 For a function f = {0, 1}n → {0, 1}m, sizeB(f) is the minimum size boolean circuit
computing f with gates taken from basis B (a set of operations). Basis B is universal if all boolean
functions can be computed with gates from B.

Example 7 Some universal bases:

• Bk = {all boolean functions on k variables}, k ≥ 2, |Bk| = 22k

• S = {∧,∨,¬}

• {NAND}

• {∧,⊗} = addition and multiplication mod 2. Provides a connection between boolean circuit
complexity and arithmetic circuit complexity.

Gates in one universal basis can be expressed by a constant number of gates in another universal
basis:

Fact 8 If B, B′ are universal bases then ∀f sizeB′(f) ≤ cB,B′ · sizeB(f).

Recall: Every language L in P has polynomial sized circuits C1, C2, . . . s.t.

1. |Cn| ≤ poly(n)

2. ∀x ∈ {0, 1}n, Cn(x) = L(x)

The converse is false. Consider the unary language L = {x : |x|th TM halts on ε}. It is
undecidable, but has trivial poly-sized circuits (since L is constant on each input length). In
a previous lecture, we’ve seen that P consists of languages decidable by uniform (log-space or
P-uniform) poly-sized circuits. This motivates a TM characterization of nonuniform poly-sized
circuits.

Definition 9 For a class C of languages a : N → N we say L ∈ C/a if ∃L′ ∈ C, and “advice
strings” α1, α2, α3, . . . ∈ {0, 1}∗, |αn| = a(n), ∀x ∈ L ⇐⇒ (x, α|x|) ∈ L′.

Theorem 10 {languages decidable by poly-sized circuits} = P/poly def=
⋃

c P/nc

Proof:

(⊆) αn = bCnc (description of the nth circuit), L′ = {(x, bCc) : C(x) = 1}

(⊇) L′ decided by poly-sized circuits C ′1, C
′
2, . . . Circuits for L are given by Cn(·) = C ′n+a(n)(·, αn)

with αn hardwired to the circuit.

4.2 Motivation for studying P/poly

P 6= NP : Using circuit complexity approach, hope is to prove nonrelativizing lower bounds.

Circuit design: Minimizing the amount of hardware on a chip.

Precomputation: Work hard to compute αn, then the problem is easy on inputs of length n.

4



4.3 Karp-Lipton Theorem

One way to approach P vs. NP is to show that an NP-complete problem is not in P/poly.
This is a harder problem. Hope is that circuits are easier to reason about than TMs. Note that
P/poly contains even undecidable problems. Can it be that NP-complete problems have poly-sized
circuits? Karp-Lipton Theorem says it is unlikely.

Theorem 11 (Karp-Lipton Theorem) NP ⊆ P/poly⇒ PH = Σp
2

One way to interpret Karp-Lipton Thm is as an evidence that NP * P/poly. However, this
is only based on our intuition that PH doesn’t collapse. A more objective interpretation is that it
establishes a connection between nonuniform and uniform complexity. If there is a collapse with
nonuniform algorithms, then there is a collapse with uniform algorithms.

Proof: Suppose NP ⊆ P/poly. Then, by search vs. decision equivalence for NP, there exists
poly-sized circuits {Cn} s.t. ϕ ∈ SAT ⇒ C|ϕ|(ϕ) outputs a satisfying assignment to ϕ. To prove
the theorem, it suffices to show (Π2 SAT ∈ Σp

2) since (Πp
2 = Σp

2) implies (PH = Σp
2). An instance

of Π2SAT is given by
∀u ∃v ϕ(u, v)︸ ︷︷ ︸

SAT

The idea is to first guess (∃) the circuit for SAT and then use it to remove the inner ∃ quantifier.
We may guess the wrong circuit, but since the circuit is supposed find a satisfying assignment to
ϕu(·) def= ϕ(u, ·), we can check the result by applying ϕu. Specifically, we can solve our Π2SAT
instance as follows:

∀u ∃v ϕ(u, v)⇔ ∃C ∀u ϕu(C(ϕu)).

There are analogues of the Karp–Lipton Theorem for other classes, such EXP vs. P/poly.
There too, the result is based on some kind of checkability property of EXP-complete computations.

Next lecture: Most functions don’t have poly-sized circuits. In fact, most functions require huge
circuits.

5


