
CS225: Pseudorandomness Prof. Salil Vadhan

Lecture 10: Randomness Extractors

March 13, 2007

Based on scribe notes by Vitaly Feldman, Andrei Jorza, and Pavlo Pylyavskyy.

Having spent several lectures on expander graphs, the first major pseudorandom object in this
course, we now move on to the second: randomness extractors. We begin by discussing the original
motivation for extractors, which was to simulate randomized algorithms with sources of biased and
correlated bits. This motivation is still compelling, but extractors have taken on a much wider
significance in the years since they were introduced. They have found numerous applications in
theoretical computer science beyond this initial motivating one, in areas random from cryptogra-
phy to distributed algorithms to metric embeddings. More importantly from the perspective of
this course, they have played a major unifying role in the theory of pseudorandomness. Indeed,
the the links between the various pseudorandom objects we will study in this course (expander
graphs, randomness extractors, list-decodable codes, pseudorandom generators, samplers) were all
discovered through extractors and are still best understood through extractors.

1 Weak Random Sources and Deterministic Extractors

Typically, when we design randomized algorithms or protocols, we assume that all algorithms/parties
have access to sources of perfect randomness, i.e. bits that are unbiased and completely indepen-
dent. However, when we implement these algorithms, the physical sources of randomness to which
we have access may contain biases and correlations. For example, we may use low-order bits of the
system clock, the user’s mouse movements, or a noisy diode based on quantum effects. While these
sources may have some randomness in them, the assumption that the source is perfect is a strong
one, and thus it is of interest to try and relax it.

Ideally, what we would like is a compiler that takes any algorithm A that works correctly when
fed perfectly random bits Um, and produces a new algorithm A′ that will work even if it is fed
random bits X ∈ {0, 1}n that come from a ‘weak’ random source. For example, if A is a BPP
algorithm, then we would like A′ to also run in probabilistic polynomial time. One way to design
such compilers is to design a randomness extractor Ext : {0, 1}n → {0, 1}m such that A(X) ≡ Um.

Von Neumann Sources. A simple version of this question was already considered by von Neu-
mann. He looked at sources that consist of identical random boolean variables X1, X2, . . . , Xn ∈
{0, 1} which are independent but biased. That is, for every i, Pr [Xi = 1] = δ for some unknown δ.
How can such a source be converted into a source of independent, unbiased bits?

Sources of Independent Bits. Lets now look at a bit more interesting source in which all
the variables are still independent but the bias is no longer the same. Specifically, for every i,
Pr [Xi = 1] = δi and 0 < δ ≤ δi ≤ 1 − δ. How can we deal with such a source?

1

Let’s be more precise about the problems we are studying. A source on {0, 1}n is simply a random
variable X taking values in {0, 1}n. In each of the above examples, there is an implicit class of
sources being studied. For example, IndBitsn,δ is the class of sources X on {0, 1}n where the bits
Xi are independent and satisfy δ ≤ Pr[Xi = 1] ≤ 1− δ. We could define VNn,δ to be the same with
the further restriction that all of the Xi’s are identically distributed, i.e. Pr[Xi = 1] = Pr[Xj = 1]
for all i, j.

Definition 1 (deterministic extractors) 1 Let C be a class of sources on {0, 1}n. An ε-extractor
for C is a function Ext : {0, 1}n → {0, 1}m such that for every X ∈ C, Ext(X) is ‘ε-close’ to Um.

Note that we want a single function Ext that works for all sources in the class. This captures the
idea that we do not want to assume we know the exact distribution of the physical source we are
using, but only that it comes from some class. For example, for IndBitsn,δ, we know that the bits
are independent and none are too biased, but not the specific bias of each bit. Note also that we
only allow the extractor one sample from the source X. If we want to allow multiple independent
samples, then this should be modelled explicitly in our class of sources; ideally we would like to
minimize the independence assumptions used.

We still need to define what we mean for the output to be ε-close to Um.

Definition 2 For random variables X and Y taking values in U , their statistical difference (also
known as variation distance) is ∆(X,Y) = maxT⊆U |Pr[X ∈ T] − Pr[Y ∈ T]|. We say that X and
Y are ε-close if ∆(X,Y) ≤ ε.

The intuitive understanding would be that any event in X happens in Y with same probability
±ε. This is really the most natural measure of distance for probability distributions (much moreso
than the `2 distance we used in the study of random walks). In particular, it satisfies the following
natural properties.

1. 0 ≤ ∆(X,Y) ≤ 1, equality holds for identical distributions and for distributions with disjoint
support correspondingly.

2. ∆(X,Y) is symmetric.

3. ∆(X,Z) ≤ ∆(X,Y) + ∆(X,Z).

4. for any function f we have ∆(f(X), f(Y)) ≤ ∆(X,Y).

5. ∆((X1, X2), (Y1, Y2)) ≤ ∆(X1, Y1) + ∆(X2, Y2) if X1 and X2, as well as Y1 and Y2, are inde-
pendent.

6. ∆(X,Y) = 1
2 · |X − Y |1, where | · |1 is the `1 distance. Thus, X is ε-close to Y iff we can

transform X into Y by ‘shifting’ at most an ε fraction of probability mass.

We now observe that extractors according to this definition give us the ‘compilers’ we want.

1Such extractors are called deterministic or seedless to contrast with the probabilistic or seeded randomness

extractors we will see later.

2

Proposition 3 Let A(w; r) be a randomized algorithm such that A(w;Um) has error probability at
most γ, and let Ext : {0, 1}n → {0, 1}m be an ε-extractor for a class C of sources on {0, 1}n. Define
A′(w;x) = A′(w; Ext(x)). Then for every source X ∈ C, A′(w;X) has error probability at most
γ + ε.

From this, we see some additional properties we’d like from our extractors. We’d like the extractor
itself to be efficiently computable (e.g. polynomial time). In particular, to get m almost-uniform
bits out, we should need at most n = poly(m) bits bits from the weak random source.

Using our earlier observations (i.e. the parity extractor), we achieve these properties for extracting
from sources of independent bits:

Proposition 4 For every constant δ > 0, every n,m ∈ N, there is a polynomial-time computable
function Ext : {0, 1}n → {0, 1}m that is an ε-extractor for IndBitsn,δ, with ε = m · 2−Ω(n/m).

In particular, taking n = m2, we get exponentially small error with a source of polynomial length.

Proof: Ext breaks the source into m blocks of length bn/mc and outputs the parity of each
block.

Santha-Vazirani Sources. Another interesting class of sources, which looks similar to the pre-
vious example is the class SVn,δ of Santha-Vazirani sources. These are the sources that for every
i, every x1, . . . , xn ∈ {0, 1} and some constant δ > 0, satisfy

δ ≤ Pr [Xi = 1 | X1 = x1, X2 = x2, . . . , Xi−1 = xi−1] ≤ 1 − δ

The parity extractor used above will be of no help with this source since the next bit could be
chosen in a way that the parity will be equal to 1 with probability δ. It turns out that this can be
said about any fixed randomness extraction function.

Proposition 5 (PS 4) For every n ∈ N, δ > 0, and fixed extraction function Ext : {0, 1}n →
{0, 1} there exists a source X ∈ SVn,δ such that either Pr [Ext(X) = 1] ≤ δ or Pr [Ext(X) = 1] ≥
1 − δ. That is, there is no ε-extractor for SVn,δ for ε < 1/2 − δ.

Nevertheless, as we will see, the answer to the question whether we can simulate BPP algorithms
with Santha-Vazirani sources will be “yes”! Indeed, we will even be able to handle a much more
general class of sources, introduced in the next section.

2 General Weak Sources

2.1 Measures of Entropy

Intuitively, to extract m almost-uniform bits from a source, the source must have at least ‘m bits
of randomness’ in it (e.g. its support cannot be much smaller than 2m). Ideally, this is all we
would like to assume about a source. Thus, we need some measure of how much randomness is in
a random variable; this can be done using various notions of entropy described below.

3

• Shanon entropy:

HSh(X) = E
x

R
←X

[

log
1

Pr [X = x]

]

.

• Renyi entropy:

H2(X) = log

(

1

E
x

R
←X

[Pr [X = x]]

)

= log
1

CP(X)
.

• Min-entropy:

H∞(X) = min
x

{

log
1

Pr [X = x]

}

.

(All log-s are in base 2.)

2.2 Basic Properties

All the three measures satisfy the following properties:

• 0 ≤ H(X) ≤ log |Supp(X)|. Thus, H(X) = 0 if X is constant, and H(X) = |Supp(X)| if X is
uniform on Supp(X).

• If X,Y are independent, then H((X,Y)) = H(X) + H(Y).

• For every deterministic function f , we have H(f(X)) ≤ H(X).

• For every X, we have H∞(X) ≤ H2(X) ≤ HSh (X).

To illustrate the differences between the three notions, consider a source X such that X = 0n with
probability 0.99 and X = Un with probability 0.01. Then HSh (X) ≥ 0.01n (contribution from
the uniform distribution), H2(X) ≤ log

(

1
0.992

)

< 1 and H∞(X) ≤ log
(

1
0.99

)

< 1 (contributions
from the constant distribution with probability 0.99). Note that even though X has relatively high
Shannon entropy, we cannot expect to extract bits that are close to uniform or carry out any useful
randomized computations with one sample from X, because it gives us nothing useful 99% of the
time. Thus, we should use the stronger measures of entropy given by H or H∞.

Then why is Shannon entropy so widely used in information theory results? The reason is that such
results typically study what happens when you have many independent samples from the source.
In such a case, it turns out that the the source is “close” to one where the min-entropy is roughly
equal to the Shannon entropy. Thus the distinction between these entropy measures becomes less
significant. (Recall that we only allow one sample from the source.) Moreover, Shannon entropy
satisfies many nice identities that make it quite easy to work with. Min-entropy and Renyi entropy
are much more delicate.

4

2.3 k-sources

Definition 6 X is a k-source is H∞(X) ≥ k, i.e., if Pr [X = x] ≤ 2−k.

A typical setting of parameters is k = δn for some fixed δ, e.g., 0.01. We call δ the min-entropy
rate. Some different ranges that are commonly studied (and are useful for different applications):
k = polylog(n), k = nγ for a constant γ ∈ (0, 1), k = δn for a constant δ ∈ (0, 1), and k = n−O(1).
The middle two (k = nγ and k = δn) are the most natural for simulating randomized algorithms
with weak random sources.

Examples of k-sources:

• k random and independent bits, together with n − k fixed bits. These are called oblivious
bit-fixing sources.

• k random and independent bits, and n − k bits that depend arbitrarily on the first k bits.
These are called adaptive bit-fixing sources.

• Santha-Vazirani δ sources. Take k = log 1
(1−δ)n = Θ(δn).

• Uniform distribution on S ⊂ {0, 1}n with |S| = 2k. These are called flat k-sources.

It turns out that flat k-sources are really representative of general k-sources.

Proposition 7 Every k-source is a convex combination of flat k-sources (provided that 2k ∈ N),
i.e., X =

∑

piXi with 0 ≤ pi ≤ 1,
∑

pi = 1 and all the Xi are flat k-sources.

Proof Sketch: Consider each source on [N] (recall that N = 2n) as a vector X ∈ R
N . Then X

is a k-source if and only if ∀i one has X(i) ∈ [0, 1] so that
∑

X(i) = 1 (condition for probabilities)
and ∀i one has X(i) ≤ 2−k (condition for k-source).

The set of all k-sources is a polytope determined by all these vectors, since all these conditions are
linear. More precisely, the set of k-sources is the intersection of the hypercube [0, 2−k]N and the
hyperplane

∑

X(i) = 1. This is a convex polytope and so any k-source is a convex combination of
the vertices of the polytope. The vertices of the polytope are the points that make a maximal subset
of the inequalities tight. Since

∑

X(i) = 1, these sources are precisely those where X(i) = 2−k for
2k values of i and X(i) = 0 for the remaining values of i. Therefore the vertices are represented by
the flat k-sources. �

Thus, we can think of any k-source as being obtained by first selecting a flat k-source Xi according
to some distribution (given by the pi’s) and then selecting a random sample from Xi. This means
that if we can compile probabilistic algorithms to work with flat k-sources, then we can compile
them to work with any k-source.

5

3 Seeded Extractors

Proposition 5 tell us that it impossible to have deterministic extractors for Santha-Vazirani sources.
Here we consider k-sources, which are more general than Santha-Vazirani sources, and hence also
impossible to have deterministic extractors. The impossibility result for k-sources is stronger and
simpler to prove.

Proposition 8 For any Ext : {0, 1}n → {0, 1} there exists an (n − 1)-source X so that Ext(X) is
constant.

Proof: There exists b ∈ {0, 1} so that |Ext−1(b)| ≥ 2n/2 = 2n−1. Then let X be the uniform
distribution on Ext−1(b).

On the other hand, if we reverse the order of quantifiers, allowing the extractor to depend on the
source, it is easy to see that good extractors exist and in fact a randomly chosen function will be
a good extractor with high probability.

Proposition 9 For every n, k,m ∈ N, every ε > 0, and every flat k-source X, if we choose a
random function Ext : {0, 1}n → {0, 1}m with m = k − 2 log(1/ε) − O(1), then Ext(X) will be
ε-close to Um with probability 1 − 2−Ω(Kε2), where K = 2k.

(We will commonly use the convention that capital variables are 2 raised to the power of the
corresponding lowercase variable, such as K = 2k above.)

Proof: Choose our extractor randomly. We want it to have following property: for all T ⊆ [M],

|Pr[Ext(X) ⊆ T] − Pr[Um ⊆ T | ≤ ε. This can be reformulated as |{x∈X|Ext(x)∈T}|
K differs from

density µ(T) on not more than ε. For each point x ∈ Supp(X) the chance to be in T is µ(T).
Chernoff bound says in this case that for each fixed T this condition holds with high probability,
that is at least 1 − 2−Ω(Kε2). Then the probability that condition is violated for at least one T is
at most 2M2−Ω(Kε2), which is less than 1 for m = k − 2 log(1

ε) − O(1).

Note that the failure probability is doubly-exponentially small in k. Naively, one might hope that
we could get an extractor that’s good for all flat k-sources by a union bound. But the number of
flat k-sources is

(

N
K

)

≈ NK (where n = 2n), which is unfortunately a larger double-exponential in
k. We can overcome this gap by allowing the extractor to be ‘slightly’ probabilistic, i.e. allowing
the extractor a seed consisting of a small number of truly random bits in addition to the weak
random source. We can think of this seed of truly random bits as random choice of an extractor
from family of extractors. This leads to the following crucial definition:

Definition 10 (seeded extractors) Extractor Ext : {0, 1}n × {0, 1}d → {0, 1}m is a (k, ε)-
extractor if for any k-source X on {0, 1}n, Ext(X,Ud) is ε-close to Um.

We want to give a construction which minimizes d and maximizes m. We prove the following
theorem.

6

Theorem 11 For any n and k (k ≤ n) and any ε > 0 there exists a (k, ε) - extractor Ext :
{0, 1}n ×{0, 1}d → {0, 1}m with m = k + d− 2 log(1

ε)−O(1) and d = log(n− k) + 2 log(1
ε) + O(1).

One setting of parameters to keep in mind (for our application of simulating randomized algorithms
with a weak source) is k = δn, with δ a fixed constant (e.g. δ = 0.01), and ε a fixed constant (e.g.
ε = 0.01).

Proof: We use probabilistic method to prove the theorem. It suffices for Ext to work for flat
k-sources. Choose extractor Ext at random. Then the probability that extractor fails is not more
than number of flat k-sources times times the probability Ext fails for fixed flat k-source. By the
above proposition, the probability of failure for a fixed flat k-source is at most 2−Ω(KDε2), since
(X,Ud) is a flat (k + d)-source) and m = k + d− 2 log(1

ε)−O(1). Thus the total failure probability
is at most

(

N

K

)

· 2−Ω(KDε2) ≤

(

Ne

K

)K

2−Ω(KDε2).

The letter expression is less than 1 if Dε2 ≥ 2 log Ne
K = c(n − k) + c′ for constants c, c′.This is

equivalent to d = log(n − k) + 2 log(1
ε) + O(1).

It turns out that both bounds (on m and d) are individually tight upto the O(1) terms.

4 Simulating Randomized Algorithms

Now we study simulating randomized algorithm having weak random source. Usual randomized
algorithm takes input string w and m random bits, and outputs the correct answer with probability
at least 1 − γ. Assume now we do not have a source of perfectly random bits. Instead we have a
k-source and an extractor, which takes an input from our weak source. We also allow it to take
small seed of purely random bits, which as mentioned above, can be viewed as choosing a random
extractor from some family. The output of the extractor we feed into our randomized algorithm
A instead of purely random bits it took before. Since above we had seed having logarithmic size,
we can actually eliminate it just by running through all possible values it can take and ruling my
majority vote.

Proposition 12 Let A(w; r) be a randomized algorithm such that A(w;Um) has error probability
at most δ, and let Ext : {0, 1}n × {0, 1}d → {0, 1}m be a (k, ε)-extractor. Define

A′(w;x) = A′(w, x) = maj
y∈{0,1}d

{A(w,Ext(x, y))}.

Then for every k-source X on {0, 1}n, A′(w;X) has error probability at most 2(γ + ε).

Proof: The probability that A(w,Ext(X,Ud)) is incorrect is not more than probability A(w,Um)
is incorrect plus ε, γ + ε in particular, according to the defining property of statistical difference.
Then the probability that majy A(w,Ext(X, y)) is incorrect is at most 2(γ + ε).

7

Note that the running time slowdown is 2d times the running time of Ext. Thus, we want to
construct extractors achieving the following three properties: d = O(log n); Ext computable in
polynomial time; m = kΩ(1).

The bound on the error probability in Proposition 12 can actually be made exponentially small
(say 2−t) by using an extractor that is designed for min-entropy roughly k − t instead of k.

We note that even though seeded extractors suffice for simulating randomized algorithms with
only a weak source, they do not suffice for all applications of randomness in theoretical computer
science. The trick of eliminating the random seed by enumeration does not work, for example, in
cryptographic applications of randomness. Thus the study of deterministic extractors for restricted
classes of sources remains a very interesting an active research direction. We, however, will focus on
seeded extractors, due to their many applications and their connections to the other pseudorandom
objects we are studying.

8

