
CS225: Pseudorandomness Prof. Salil Vadhan

Lecture 16: List-Decodable Codes vs. Extractors & Expanders

April 12, 2007

Based on scribe notes by xxxx.

Previously, we have seen close connections between expanders and extractors (and related objects,
such as condensers). In this lecture, we will see how these objects are also closely related to
list-decodable codes, by presenting all of them in a single, list-decoding-like framework.

1 List-decoding views of expanders and extractors

We consider a code Enc : [N] → [M]D as corresponding syntactically to an extractor Ext : [N] ×
[D] → [D] × [M] and an expander with neighbor function Γ : [N] × [D] → [D] × [M] , via the
correspondence:

Ext(x, y) = Γ(x, y) = (y, C(x)y).

Note that this yields extractors and expanders with output/right-hand-side [D] × [M] and where
the first component equals the seed/edge-label. (Recall that for such an extractor Ext, the second
component is called a strong extractor.) Conversely, any such extractor or expander yields a code
Enc.

For a subset T ⊆ [D] × [M] and ε ∈ [0, 1], we define

LIST(T, ε)
def
= {x : Pr

y
[(y,Enc(x)y) ∈ T] ≥ ε}

= {x : Pr
y

[Ext(x, y) ∈ T] ≥ ε}

= {x : Pr
y

[Γ(x, y) ∈ T] ≥ ε}

We can formulate the standard list-decoding property of codes in this language as follows:

Lemma 1 Enc : [N] → [M]D is (1 − 1/M − ε,K) list-decodable iff for every r ∈ [M]D, we have

|LIST(Tr, 1/M + ε)| ≤ K,

where Tr = {(y, ry) : y ∈ [D]}.

Now let’s look at extractors.

Lemma 2 If Ext : [N] × [D] → [M] is a (k, ε) extractor then for every T ⊆ [D] × [M], we have

|LIST(T, µ(T) + ε)| < K, (1)

where K = 2k.

Conversely, if (1) holds for every T ⊆ [D] × [M], then Ext is a (k + log(1/ε), 2ε) extractor.

1

This lemma says that the extractor property is equivalent to a “list-decoding-like property,” up to
a factor of 2 in the error ε and an extra additive entropy loss of log(1/ε) (both of which are usually
considered insignificant).

Let’s compare this to the standard list-decoding property of codes as formulated in Lemma 1. Note
that the only difference between the condition in Lemma 1 and the one in Lemma 2 is that in the
former, we restrict to sets T of the form Tr. That is, we restrict to sets T ⊆ [D]× [M] that contain
exactly one element of the form (y, ·) for each y.

Corollary 3 If Ext : [N]×[D] → [D]×[M] is a (k, ε) extractor (satisfying Ext(x, y) = (y,Ext ′(x, y))),
then the corresponding code Enc is (1 − 1/M − ε,K) list-decodable.

A converse holds when the alphabet size is small.

Proposition 4 If Enc : [N] → [M]D is (1 − 1/M − ε,K) list-decodable, then the corresponding
function Ext : [N] × [D] → [D] × [M] given by Ext(x, y) = (y,Enc(x)y) is a (k + log(1/ε),M · ε)
extractor. extractor.

Proof: Let X be a k-source. Then the statistical difference between Ext(X,U[D]) and U[D]×U[M]

equals

∆(Ext(X,U[D]), U[D] × U[M]) = E
y

R
←Y

[

∆(Enc(X)y, U[M])
]

≤
M

2
E

y
R
←Y

[

max
z

Pr[Enc(X)y = z] − 1/M
]

where the last inequality follows from the `1 formulation of statistical difference.

So if we define r ∈ [M]D by setting ry to be the value z maximizing Pr[Enc(X)y = z] − 1/M , we
have:

∆(Ext(X,U[D]), U[D] × U[M]) ≤
M

2
· (Pr[(Y,Enc(X)Y) ∈ Tr] − 1/M) ,

≤
M

2
· (Pr[X ∈ LIST(Tr, 1/M + ε)] + ε)

≤
M

2
·
(

2−(k+log(1/ε) · K + ε
)

≤ M · ε.

Thus, the quantitative relationship between extractors and list-decodable codes deteriorates ex-
tremely fast as the output length/alphabet size increases. Nevertheless, the list-decoding view of
extractors as given in Lemma ?? turns out to be quite useful (as we will see later in the course).

For expanders, the list-decoding view is quite simple to state and prove.

Lemma 5 Γ : [N]× [D] → [D]× [M] is an (= K,A) expander iff for every set T ⊆ [D]× [M] such
that |T | < KA, we have:

|LIST(T, 1)| < K.

2

On one hand, this list-decoding property seems easier to establish than the ones for codes and
extractors because we look at LIST(T, 1) instead of LIST(T, µ(T) + ε). On the other hand, to get
expansion (i.e. A > 1), we require a very tight relationship between |T | and |LIST(T, 1)|. In the
setting of extractors or codes, we would not care much about a factor of 2 loss in |LIST(T)|, as this
corresponds to 1 bit of entropy loss for extractors or just a slightly larger list size for codes. But
here it corresponds to a factor 2 loss in expansion, which can be quite significant. In particular, we
cannot afford it if we are trying to get A = (1 − ε) · D, as we will be in the next section.

2 Expanders from Parvaresh–Vardy Codes

Consider the bipartite multigraph obtained from the Parvaresh–Vardy codes via the above corre-
spondence. That is, we define Γ : F

n
q × Fq → Fq × F

m
q

Γ(f, y) = [y, f0(y), f1(y), . . . , fm−1(y)], (2)

where f(Y) is a polynomial of degree at most n − 1 over Fq, and we define fi(Y) = f(Y)hi

mod E(Y), where E is a fixed irreducible polynomial of degree n over Fq. (Note that we are using
n − 1 instead of d to denote degree of f .)

Theorem 6 The graph Γ : F
n
q ×Fq → F

m+1
q defined above is a (Kmax , A) expander for Kmax = hm

and A = q − nhm.

Proof: Let K be any integer less than or equal to Kmax = hm, and let A = q−nmh. By Lemma 5,
it suffices to show that for every set T ⊆ F

m+1
q of size at most AK −1, we have |LIST(T)| ≤ K −1.

We begin by doing the proof for K = Kmax = hm, and later describe the modifications to handle
smaller values of K. The proof goes along the same lines as the list-decoding algorithm for the
Parvaresh–Vardy codes from last lecture.

Step 1: Find a low-degree Q vanishing on T . We find a nonzero polynomial Q(Y,Z0, . . . , Zm−1)
of degree at most dY = A − 1 in its first variable Y and at most h − 1 in each of the remaining
variables such that Q(z) = 0 for all z ∈ T . (Compare this to Q(r, r(y)) = 0 for all y ∈ Fq in the
list-decoding algorithm, which corresponds to taking T = Tr.)

This is possible because
A · hm = AK > |T |.

Moreover, we may assume that Q is not divisible by E(Y). If it is, we can divide out all the factors
of E(Y), which will not affect the conditions Q(z) = 0 since E has no roots (being irreducible).

Step 2: Argue that each f(Y) ∈ LIST(r) is a ‘root’ of a related univariate polynomial

Q∗. First, we argue as in the list-decoding algorithm that if f ∈ LIST(r, 1), we have

Q(Y, f0(Y), . . . , fm−1(Y)) = 0.

This is ensured because
q > A − 1 + nmh.

3

(In the list-decoding algorithm, the left-hand side of this inequality was εq, since we were bounding
|LIST(Tr, ε)|.)

Once we have this, we can reduce both sides modulo E(Y) and deduce

0 = Q(Y, f0(Y), f2(Y), . . . , fm−1(Y)) mod E(Y)

= Q(Y, f(Y), f(Y)2, . . . , f(Y)m−1) mod E(Y)

Thus, if we define the univariate polynomial

Q∗(Z) = Q(Y,Z, Zh, . . . , Zhm−1

) mod E(Y),

then f(Y) is a root of Q∗ over the field Fq[Y]/E(Y).

Observe that Q∗ is nonzero because Q is not divisible by E(Y) and has degree at most h − 1 in
each Zi. Thus,

|LIST(T, 1)| ≤ deg(Q∗) ≤ h − 1 + (h − 1) · h + (h − 1) · h2 + · · · + (h − 1) · hm−1 = K − 1.

(Compare this to the list-decoding algorithm, where our primary goal was to efficiently enumerate
the elements of LIST(T, ε), as opposed to bound its size.)

Handling smaller values of K. We further restrict Q(Y,Z1, . . . , Zm) to only have nonzero
coefficients on form Y iMonj(Z1, . . . , Zm) for 0 ≤ i ≤ A − 1 and 0 ≤ j ≤ K − 1 ≤ hm − 1,

where Monj(Z1, . . . , Zm) = Zj0
1 · · ·Z

jm−1

m and j = j0 + j1h + · · · + jm−1h
m−1 is the base-h rep-

resentation of j. Note that this gives us AK > |T | monomials, so Step 1 is possible. Moreover
Mj(Z,Zh, Zh2

, . . . , Zhm−1

) = Zj, so the degree of Q∗ is at most K − 1, and we get the desired
list-size bound in Step 3.

We now set parameters to deduce the expander we used in Lecture 13 (to get a condenser).

Theorem 7 For every constant α > 0, every N ∈ N, K ≤ N , and ε > 0, there is an explicit
(K, (1−ε)D) expander with N left-vertices, M right-vertices, left-degree D = O((log N)(log K)/ε)1+1/α

and M ≤ D2 · K1+α. Moreover, D is a power of 2.

Proof: Let n = log N and k = log Kmax. Let h = d(nk/ε)1/αe and let q be the power of 2 in the
interval (h1+α, 2h1+α].

Set m = d(log Kmax)/(log h)e, so that hm−1 ≤ Kmax ≤ hm. Then, by Theorem 6, the graph
Γ : F

n
q × Fq → F

m+1
q defined in (2) is an (hm, A) expander for A = q − nhm. Since Kmax ≤ hm, it

is also a (Kmax , A) expander.

Note that the number of left-vertices in Γ is qn ≥ N , and the number of right-vertices is

M = qm+1 ≤ q2 · h(1+α)·(m−1) ≤ q2 · K1+α
max .

The degree is

D = q ≤ 2h1+α = O(nk/ε)1+1/α = O((log N)(log Kmax)/ε)
1+1/α.

4

To see that the expansion factor A = q − nhm ≥ q − nhk is at least (1 − ε)D = (1 − ε)q, note that

nhk ≤ ε · h1+α ≤ εq,

where the first inequality holds because hα ≥ nk/ε.

Finally, the construction is explicit because a representation of Fq for q a power of 2 (i.e. an
irreducible polynomial of degree log q over F2) as well as an irreducible polynomial E(Y) of degree
n over Fq can be found in time poly(n, log q) = poly(log N, log D).

5

