
CS225: Pseudorandomness Prof. Salil Vadhan

Lecture 16: List-Decodable Codes vs. Extractors & Expanders

April 12, 2007
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Previously, we have seen close connections between expanders and extractors (and related objects,
such as condensers). In this lecture, we will see how these objects are also closely related to
list-decodable codes, by presenting all of them in a single, list-decoding-like framework.

1 List-decoding views of expanders and extractors

We consider a code Enc : [N ] → [M ]D as corresponding syntactically to an extractor Ext : [N ] ×
[D] → [D] × [M ] and an expander with neighbor function Γ : [N ] × [D] → [D] × [M ] , via the
correspondence:

Ext(x, y) = Γ(x, y) = (y, C(x)y).

Note that this yields extractors and expanders with output/right-hand-side [D] × [M ] and where
the first component equals the seed/edge-label. (Recall that for such an extractor Ext, the second
component is called a strong extractor.) Conversely, any such extractor or expander yields a code
Enc.

For a subset T ⊆ [D] × [M ] and ε ∈ [0, 1], we define

LIST(T, ε)
def
= {x : Pr

y
[(y,Enc(x)y) ∈ T ] ≥ ε}

= {x : Pr
y

[Ext(x, y) ∈ T ] ≥ ε}

= {x : Pr
y

[Γ(x, y) ∈ T ] ≥ ε}

We can formulate the standard list-decoding property of codes in this language as follows:

Lemma 1 Enc : [N ] → [M ]D is (1 − 1/M − ε,K) list-decodable iff for every r ∈ [M ]D, we have

|LIST(Tr, 1/M + ε)| ≤ K,

where Tr = {(y, ry) : y ∈ [D]}.

Now let’s look at extractors.

Lemma 2 If Ext : [N ] × [D] → [M ] is a (k, ε) extractor then for every T ⊆ [D] × [M ], we have

|LIST(T, µ(T ) + ε)| < K, (1)

where K = 2k.

Conversely, if (1) holds for every T ⊆ [D] × [M ], then Ext is a (k + log(1/ε), 2ε) extractor.
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This lemma says that the extractor property is equivalent to a “list-decoding-like property,” up to
a factor of 2 in the error ε and an extra additive entropy loss of log(1/ε) (both of which are usually
considered insignificant).

Let’s compare this to the standard list-decoding property of codes as formulated in Lemma 1. Note
that the only difference between the condition in Lemma 1 and the one in Lemma 2 is that in the
former, we restrict to sets T of the form Tr. That is, we restrict to sets T ⊆ [D]× [M ] that contain
exactly one element of the form (y, ·) for each y.

Corollary 3 If Ext : [N ]×[D] → [D]×[M ] is a (k, ε) extractor (satisfying Ext(x, y) = (y,Ext ′(x, y))),
then the corresponding code Enc is (1 − 1/M − ε,K) list-decodable.

A converse holds when the alphabet size is small.

Proposition 4 If Enc : [N ] → [M ]D is (1 − 1/M − ε,K) list-decodable, then the corresponding
function Ext : [N ] × [D] → [D] × [M ] given by Ext(x, y) = (y,Enc(x)y) is a (k + log(1/ε),M · ε)
extractor. extractor.

Proof: Let X be a k-source. Then the statistical difference between Ext(X,U[D]) and U[D]×U[M ]

equals

∆(Ext(X,U[D]), U[D] × U[M ]) = E
y

R
←Y

[

∆(Enc(X)y, U[M ])
]

≤
M

2
E

y
R
←Y

[

max
z

Pr[Enc(X)y = z] − 1/M
]

where the last inequality follows from the `1 formulation of statistical difference.

So if we define r ∈ [M ]D by setting ry to be the value z maximizing Pr[Enc(X)y = z] − 1/M , we
have:

∆(Ext(X,U[D]), U[D] × U[M ]) ≤
M

2
· (Pr[(Y,Enc(X)Y ) ∈ Tr] − 1/M) ,

≤
M

2
· (Pr[X ∈ LIST(Tr, 1/M + ε)] + ε)

≤
M

2
·
(

2−(k+log(1/ε) · K + ε
)

≤ M · ε.

Thus, the quantitative relationship between extractors and list-decodable codes deteriorates ex-
tremely fast as the output length/alphabet size increases. Nevertheless, the list-decoding view of
extractors as given in Lemma ?? turns out to be quite useful (as we will see later in the course).

For expanders, the list-decoding view is quite simple to state and prove.

Lemma 5 Γ : [N ]× [D] → [D]× [M ] is an (= K,A) expander iff for every set T ⊆ [D]× [M ] such
that |T | < KA, we have:

|LIST(T, 1)| < K.
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On one hand, this list-decoding property seems easier to establish than the ones for codes and
extractors because we look at LIST(T, 1) instead of LIST(T, µ(T ) + ε). On the other hand, to get
expansion (i.e. A > 1), we require a very tight relationship between |T | and |LIST(T, 1)|. In the
setting of extractors or codes, we would not care much about a factor of 2 loss in |LIST(T )|, as this
corresponds to 1 bit of entropy loss for extractors or just a slightly larger list size for codes. But
here it corresponds to a factor 2 loss in expansion, which can be quite significant. In particular, we
cannot afford it if we are trying to get A = (1 − ε) · D, as we will be in the next section.

2 Expanders from Parvaresh–Vardy Codes

Consider the bipartite multigraph obtained from the Parvaresh–Vardy codes via the above corre-
spondence. That is, we define Γ : F

n
q × Fq → Fq × F

m
q

Γ(f, y) = [y, f0(y), f1(y), . . . , fm−1(y)], (2)

where f(Y ) is a polynomial of degree at most n − 1 over Fq, and we define fi(Y ) = f(Y )hi

mod E(Y ), where E is a fixed irreducible polynomial of degree n over Fq. (Note that we are using
n − 1 instead of d to denote degree of f .)

Theorem 6 The graph Γ : F
n
q ×Fq → F

m+1
q defined above is a (Kmax , A) expander for Kmax = hm

and A = q − nhm.

Proof: Let K be any integer less than or equal to Kmax = hm, and let A = q−nmh. By Lemma 5,
it suffices to show that for every set T ⊆ F

m+1
q of size at most AK −1, we have |LIST(T )| ≤ K −1.

We begin by doing the proof for K = Kmax = hm, and later describe the modifications to handle
smaller values of K. The proof goes along the same lines as the list-decoding algorithm for the
Parvaresh–Vardy codes from last lecture.

Step 1: Find a low-degree Q vanishing on T . We find a nonzero polynomial Q(Y,Z0, . . . , Zm−1)
of degree at most dY = A − 1 in its first variable Y and at most h − 1 in each of the remaining
variables such that Q(z) = 0 for all z ∈ T . (Compare this to Q(r, r(y)) = 0 for all y ∈ Fq in the
list-decoding algorithm, which corresponds to taking T = Tr.)

This is possible because
A · hm = AK > |T |.

Moreover, we may assume that Q is not divisible by E(Y ). If it is, we can divide out all the factors
of E(Y ), which will not affect the conditions Q(z) = 0 since E has no roots (being irreducible).

Step 2: Argue that each f(Y ) ∈ LIST(r) is a ‘root’ of a related univariate polynomial

Q∗. First, we argue as in the list-decoding algorithm that if f ∈ LIST(r, 1), we have

Q(Y, f0(Y ), . . . , fm−1(Y )) = 0.

This is ensured because
q > A − 1 + nmh.
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(In the list-decoding algorithm, the left-hand side of this inequality was εq, since we were bounding
|LIST(Tr, ε)|.)

Once we have this, we can reduce both sides modulo E(Y ) and deduce

0 = Q(Y, f0(Y ), f2(Y ), . . . , fm−1(Y )) mod E(Y )

= Q(Y, f(Y ), f(Y )2, . . . , f(Y )m−1) mod E(Y )

Thus, if we define the univariate polynomial

Q∗(Z) = Q(Y,Z, Zh, . . . , Zhm−1

) mod E(Y ),

then f(Y ) is a root of Q∗ over the field Fq[Y ]/E(Y ).

Observe that Q∗ is nonzero because Q is not divisible by E(Y ) and has degree at most h − 1 in
each Zi. Thus,

|LIST(T, 1)| ≤ deg(Q∗) ≤ h − 1 + (h − 1) · h + (h − 1) · h2 + · · · + (h − 1) · hm−1 = K − 1.

(Compare this to the list-decoding algorithm, where our primary goal was to efficiently enumerate
the elements of LIST(T, ε), as opposed to bound its size.)

Handling smaller values of K. We further restrict Q(Y,Z1, . . . , Zm) to only have nonzero
coefficients on form Y iMonj(Z1, . . . , Zm) for 0 ≤ i ≤ A − 1 and 0 ≤ j ≤ K − 1 ≤ hm − 1,

where Monj(Z1, . . . , Zm) = Zj0
1 · · ·Z

jm−1

m and j = j0 + j1h + · · · + jm−1h
m−1 is the base-h rep-

resentation of j. Note that this gives us AK > |T | monomials, so Step 1 is possible. Moreover
Mj(Z,Zh, Zh2

, . . . , Zhm−1

) = Zj, so the degree of Q∗ is at most K − 1, and we get the desired
list-size bound in Step 3.

We now set parameters to deduce the expander we used in Lecture 13 (to get a condenser).

Theorem 7 For every constant α > 0, every N ∈ N, K ≤ N , and ε > 0, there is an explicit
(K, (1−ε)D) expander with N left-vertices, M right-vertices, left-degree D = O((log N)(log K)/ε)1+1/α

and M ≤ D2 · K1+α. Moreover, D is a power of 2.

Proof: Let n = log N and k = log Kmax. Let h = d(nk/ε)1/αe and let q be the power of 2 in the
interval (h1+α, 2h1+α].

Set m = d(log Kmax)/(log h)e, so that hm−1 ≤ Kmax ≤ hm. Then, by Theorem 6, the graph
Γ : F

n
q × Fq → F

m+1
q defined in (2) is an (hm, A) expander for A = q − nhm. Since Kmax ≤ hm, it

is also a (Kmax , A) expander.

Note that the number of left-vertices in Γ is qn ≥ N , and the number of right-vertices is

M = qm+1 ≤ q2 · h(1+α)·(m−1) ≤ q2 · K1+α
max .

The degree is

D = q ≤ 2h1+α = O(nk/ε)1+1/α = O((log N)(log Kmax)/ε)
1+1/α.
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To see that the expansion factor A = q − nhm ≥ q − nhk is at least (1 − ε)D = (1 − ε)q, note that

nhk ≤ ε · h1+α ≤ εq,

where the first inequality holds because hα ≥ nk/ε.

Finally, the construction is explicit because a representation of Fq for q a power of 2 (i.e. an
irreducible polynomial of degree log q over F2) as well as an irreducible polynomial E(Y ) of degree
n over Fq can be found in time poly(n, log q) = poly(log N, log D).
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