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t. We 
onstru
t several new statisti
al zero-knowledge proofswith eÆ
ient provers, i.e. ones where the prover strategy runs in proba-bilisti
 polynomial time given an NP witness for the input string.Our �rst proof systems are for approximate versions of the ShortestVe
tor Problem (SVP) and Closest Ve
tor Problem (CVP),where the witness is simply a short ve
tor in the latti
e or a latti
e ve
tor
lose to the target, respe
tively. Our proof systems are in fa
t proofs ofknowledge, and as a result, we immediately obtain eÆ
ient latti
e-basedidenti�
ation s
hemes whi
h 
an be implemented with arbitrary familiesof latti
es in whi
h the approximate SVP or CVP are hard.We then turn to the general question of whether all problems in SZK \NP admit statisti
al zero-knowledge proofs with eÆ
ient provers. To-wards this end, we give a statisti
al zero-knowledge proof system withan eÆ
ient prover for a natural restri
tion of Statisti
al Differen
e,a 
omplete problem for SZK. We also suggest a plausible approa
h toresolving the general question in the positive.1 Introdu
tionZero-knowledge proof systems, introdu
ed in [1℄, have proven to be a powerfultool for 
onstru
ting 
ryptographi
 proto
ols. They have also turned out to be ari
h obje
t of study from the perspe
tive of 
omplexity theory. In this paper, wefo
us on statisti
al zero knowledge (SZK), whi
h is the form of zero knowledgethat provides the strongest se
urity guarantees and whose 
omplexity-theoreti
study has been most a
tive in re
ent years. One signi�
ant gap between mu
h ofthe re
ent theoreti
al study and the 
ryptographi
 appli
ability of SZK involvesthe prover's eÆ
ien
y, i.e. whether the prover 
an be implemented in polynomialtime (given some auxiliary information). This property is 
learly essential for azero-knowledge proof to be used in 
ryptographi
 proto
ols, but many of thetheoreti
al results ignore this issue. Prover eÆ
ien
y for SZK has been 
onsid-ered in the past, leading to the result of Bellare and Petrank [2℄ that any SZK? Supported in part by NSF Career Award CCR-0093029.?? Supported in part by NSF Grant CCR-0205423 and a Sloan Resear
h Fellowship.



proof system admits a prover that runs in probabilisti
 polynomial time givenan NP ora
le. However, this notion of eÆ
ien
y is insuÆ
ient for 
ryptography,as the NP ora
le 
annot be realized eÆ
iently. In 
ryptographi
 appli
ations,one would like the prover to run in probabilisti
 polynomial time given only theinput string x (drawn from some NP language L) and an NP-witness w (the\se
ret key") that x 2 L. We 
all a proof system with this property a proof sys-tem with an eÆ
ient prover. (These were 
alled prover-pra
ti
al proof systemsin [3℄.) A number of the 
lassi
 perfe
t and statisti
al zero-knowledge proof sys-tems [1, 4℄ have eÆ
ient provers, but not all problems in SZK \NP are knownto have su
h proof systems. Indeed, it remains an intriguing open problem to
hara
terize the 
lass of problems whi
h have statisti
al zero-knowledge proofswith eÆ
ient provers and extend known results about statisti
al zero knowledgeto this 
lass.In this paper, we 
onstru
t statisti
al zero-knowledge proofs with eÆ
ientprovers for several problems previously not known to have su
h proofs. We �rstdo this for approximate versions of the Closest Ve
tor Problem (CVP)and Shortest Ve
tor Problem (SVP) in latti
es. These proof systems im-mediately yield eÆ
ient identi�
ation s
hemes based on the hardness of theseproblems. An interesting property of our s
hemes is that they allow us to usearbitrary latti
es (where CVP and SVP are hard), whi
h gives potential advan-tages both from the eÆ
ien
y and se
urity points of view; for example, there isno need to embed a \trapdoor basis" in the latti
e. Then we 
onstru
t a sta-tisti
al zero-knowledge proof with an eÆ
ient prover for a natural restri
tion ofStatisti
al Differen
e, whi
h is known to be a 
omplete problem for SZK.We view the latter result as progress towards 
hara
terizing the 
lass of problemshaving statisti
al zero-knowledge proofs with eÆ
ient provers.1.1 Statisti
al Zero KnowledgeZero-knowledge proof systems are proto
ols by whi
h a 
omputationally un-bounded prover 
an 
onvin
e a probabilisti
 polynomial-time veri�er, of an as-sertion, i.e. that some string x is a yes instan
e of some de
ision problem. Thezero-knowledge property requires that the veri�er \learns nothing" from thisintera
tion other than the fa
t that the assertion being proven is true. In a sta-tisti
al zero-knowledge proof system, the se
urity for both parties is very strong.Spe
i�
ally, it holds even with respe
t to 
omputationally unbounded 
heatingprovers or veri�ers. Note that even though the se
urity holds for 
omputationallyunbounded parties, the pres
ribed veri�er strategy is always required to be poly-nomial time. We will dis
uss the prover's eÆ
ien
y later. The 
lass of problemspossessing statisti
al zero-knowledge proofs is denoted SZK.In addition to its 
ryptographi
 signi�
an
e, SZK has turned out to be quiteinteresting from a 
omplexity-theoreti
 perspe
tive. On the one hand it is knownto 
ontain important 
omputational problems, su
h as Graph Nonisomor-phism [4℄ and Quadrati
 Residuosity [1℄. On the other hand, it is 
ontainedin the 
lass AM\ 
o-AM [5, 6℄ and hen
e is unlikely to 
ontain NP-hard prob-lems. More re
ently, it was dis
overed that SZK is 
losed under 
omplement [7℄



and has natural 
omplete problems [8, 9℄. Moreover, a number of useful transfor-mations of statisti
al zero-knowledge proof systems have been given, for exampleshowing that every proof system whi
h is statisti
al zero knowledge for the hon-est veri�er 
an be transformed into one whi
h is statisti
al zero knowledge evenfor 
heating veri�ers [7, 10℄.The above theoreti
al investigations fo
us on the traditional de�nition ofSZK, whereby no 
omputational restri
tion is pla
ed on the prover strategy,and many manipulations used in the study of SZK do not preserve the prover'seÆ
ien
y; indeed, this is inherent in the te
hniques used (namely, bla
k-boxtransformations) [11℄. Nevertheless, we 
onsider it an important resear
h dire
-tion to over
ome this barrier and extend the study of SZK to proto
ols witheÆ
ient provers. In parti
ular, 
an we 
hara
terize the sub
lass of SZK possess-ing statisti
al zero-knowledge proofs with eÆ
ient provers? Sin
e the eÆ
ientprover property only makes sense for problems in NP (a
tually MA) and SZKis not known to be 
ontained in NP,3 so we do not hope to show that all ofSZK has eÆ
ient provers. But do all problems in SZK \NP have statisti
alzero-knowledge proofs with eÆ
ient provers?1.2 Latti
e ProblemsA latti
e is a subset of Rn 
onsisting of all integer linear 
ombinations of a set oflinearly independent ve
tors. Two basi
 
omputational problems involving lat-ti
es are the Shortest Ve
tor Problem, �nding the shortest nonzero ve
torin the latti
e, and the Closest Ve
tor Problem, �nding the latti
e ve
tor
losest to a given target ve
tor. These problems have re
eived a great deal ofattention re
ently in both the 
ryptography and 
omplexity theory literature.On the 
omplexity side, approximate versions of both of these problems havebeen shown to be NP-hard [15{18℄, and variants of the approximate ShortestVe
tor Problem have been shown to be related by a worst-
ase/average-
ase
onne
tion [19℄. On the 
ryptography side, a number of 
ryptographi
 primitiveshave been proposed whi
h impli
itly or expli
itly rely on the hardness of theseproblems. These in
lude the one-way fun
tions of [19, 20℄, the 
ollision-resistanthash fun
tions of [21, 22℄, the publi
-key en
ryption s
hemes of [23{25℄.In [26℄, Goldrei
h and Goldwasser exhibited statisti
al zero-knowledge proofsfor approximate versions of the 
omplements of Shortest Ve
tor Problemand Closest Ve
tor Problem.4 That is, they gave proto
ols for proving thata latti
e has no short ve
tor (resp., has no ve
tor 
lose to the target ve
tor). TheGoldrei
h{Goldwasser proof systems do not have eÆ
ient provers. Indeed, theproblems they 
onsider are not known to be in NP and their main motivationwas to prove that they are inAM (and, being also in 
o-NP, are thus unlikely tobe NP-hard under standard types of redu
tions). However, sin
e SZK is 
losedunder 
omplement [7℄, it follows from their result that the 
orresponding approx-imate versions of the Shortest Ve
tor Problem and the Closest Ve
tor3 A
tually, there is some re
ent eviden
e thatAMmay equalNP [12{14℄ whi
h wouldimply that SZK � NP \ 
o-NP.4 In fa
t, their proof systems are perfe
t zero knowledge (against an honest veri�er).



Problem themselves (rather than their 
omplements) are also in SZK. Sin
ethese problems are in NP, we 
an hope to 
onstru
t statisti
al zero-knowledgeproofs with eÆ
ient provers for them. However, the SZK proofs obtained byapplying the general result of [7℄ (or even later simpli�
ations [8, 9, 27℄) do notguarantee eÆ
ient provers, and in addition would be extremely 
umbersome andimpra
ti
al.1.3 Our ResultsWe �rst 
onstru
t statisti
al zero-knowledge proof systems with eÆ
ient proversfor approximate versions of the Shortest Ve
tor Problem and ClosestVe
tor Problem. The approximation fa
tor for our proof system 
an be assmall as in the Goldrei
h{Goldwasser proof systems, namely �(pn= logn) wheren is the rank of the latti
e. The prover strategy 
an be implemented in poly-nomial time given only a short latti
e ve
tor (resp., latti
e ve
tor 
lose to thetarget ve
tor). The proof systems are a
tually proofs of knowledge, and hen
eimmediately give rise to identi�
ation s
hemes [28℄ provided one 
an eÆ
ientlygenerate latti
es in whi
h either of these problems is hard together with the 
or-responding witnesses. We remark that in order to eÆ
iently prove that a targetpoint is 
lose to the latti
e (or that the latti
e 
ontains short ve
tors) it is notne
essary to know a short (trapdoor) basis, i.e., a basis 
onsisting entirely ofshort ve
tors. On the se
urity side, embedding a trapdoor basis has often beenregarded as a weak point for many latti
e and subset-sum based 
ryptosystems.Our identi�
ation s
hemes 
an be instantiated with any latti
e, o�ering the high-est degree of se
urity. For example, one 
an use latti
es derived from the random
lasses of [19℄ or [22℄. This results in provably se
ure latti
e-based identi�
ation(ID) s
hemes with an average-
ase/worst-
ase 
onne
tion.5;6 On the eÆ
ien
yside, 
omplete freedom in the 
hoi
e of the latti
e enables the use of latti
es withspe
ial stru
ture (e.g., the 
y
li
 latti
es of [20℄, or the 
onvolutional modularlatti
es of NTRU [25℄), or share the same latti
e among di�erent users, in orderto get smaller key size or faster identi�
ation pro
edures. (See Se
tion 5.)We then return to the general question of eÆ
ient provers for SZK. Wegeneralize te
hniques of Itoh, Ohta, and Shizuya [29℄ to show that a naturalrestri
tion of Statisti
al Differen
e has a statisti
al zero-knowledge proofwith an eÆ
ient (polynomial time) prover.7 In the Statisti
al Differen
eproblem, one is given two (suitably represented) probability distributions, and5 In order to use these latti
es in our 
onstru
tion one needs a pro
edure to generatea latti
e together with a short ve
tor, but this 
an be a
hieved as explained in [19℄by slightly perturbing the latti
e distribution.6 The results of [19, 22℄ immediately give one way fun
tions from worst 
ase hardnessassumptions, whi
h, in turn, imply the existen
e of se
ure ID s
hemes. However,these generi
 
onstru
tions are pretty ineÆ
ient. Our 
onstru
tions build ID s
hemesdire
tly from the underlying latti
e problems (i.e. without going through one-wayfun
tions), resulting in substantially more eÆ
ient ID s
hemes.7 The prover in this proof system runs in polynomial time, but is not as pra
ti
al asthose for the latti
e problems. In parti
ular, our results about statisti
al di�eren
e



the question is to determine if they are relatively 
lose (say, within statisti
aldistan
e at most 1=2) or are far apart (say, at statisti
al distan
e at least 1� �).This is a 
omplete problem for SZK for any 0 < � < 1=p2 [8℄. Statisti
alDifferen
e is not known to be in NP, so we 
annot give a proof system witheÆ
ient provers for it. We 
onsider the restri
tion of Statisti
al Differen
eobtained setting � = 0: determine if two distributions are within statisti
al dis-tan
e 1=2 or are 
ompletely disjoint. We observe that this problem is in NP,and show that it admits a statisti
al zero-knowledge proof system with eÆ
ientprovers. Thus we view this as a step towards �nding proof systems with eÆ-
ient provers for all problems in SZK \ NP. In addition, the te
hniques weuse (namely [29℄) are not \bla
k box," so this approa
h is not subje
t to thelimitations in [11℄.1.4 Related WorkThe �rst zero-knowledge proof systems, namely those for Quadrati
 Residu-osity andQuadrati
 Nonresiduosity [1℄, andGraph Isomorphism [4℄ hadeÆ
ient provers and a
hieved perfe
t zero-knowledge. Subsequently, SZK proofsystems with eÆ
ient provers have been found for a number of other number-theoreti
 problems (e.g., [3, 30℄), all random self-redu
ible problems [31℄ andmonotone formulae over random self-redu
ible problems [32℄).Other notions of prover eÆ
ien
y (mostly interesting from the perspe
tive of
omputational 
omplexity) have been 
onsidered before. Building upon previouswork, Bellare and Petrank [2℄ show that for any SZK proof system, it is possibleto implement the prover strategy in probabilisti
 polynomial time given an NPora
le. Noti
e that given an NP ora
le for Satisfiability, one 
an eÆ
iently�nd NP-witnesses for arbitrary NP problems, by the self-redu
ibility of NP-
omplete problems (su
h as Satisfiability). So, the provers 
onsidered in [2℄,are 
onsiderably more powerful than ours, and allow one to prove arbitrary SZKlanguages, even those outside NP.A more restri
tive notion of prover eÆ
ien
y is 
onsidered in [33℄, wherethe prover is given ora
le a

ess to a de
ision ora
le for the same language Lunderlying the proof system.8 For example, the (honest-veri�er) perfe
t zero-knowledge proof system for Graph Nonisomorphism [4℄ satis�es this notionof prover eÆ
ien
y. The results of [33℄ are negative: there are NP languages forwhi
h �nding an NP witness for x 2 L, or even proving membership x 2 Lintera
tively (whether or not in zero-knowledge), 
annot be eÆ
iently redu
edto de
iding membership in L. This notion of proof system, 
alled 
ompetitiveshould be regarded as a plausibility result aimed at 
hara
terizing the 
omplexity
lass of statisti
al zero-knowledge proof systems with eÆ
ient provers, rather thana 
on
rete proposal of a proof system to be used in 
ryptographi
 appli
ations.8 When L is an NP-
omplete problem, then these provers are as powerful as thoseof [2℄. However, SZK is not likely to 
ontain any NP-
omplete problem. So, for anarbitrary language L in SZK, it is not 
lear how to eÆ
iently prove membership inL given ora
le a

ess to a de
ision pro
edure for L.



in [33℄, is in
omparable with ours. On the one hand, our provers are given aninput string x together with an NP-witness for x 2 L, and it is not 
lear howto eÆ
iently 
ompute su
h a witness given only a de
ision ora
le for L when Lis not NP-
omplete or self-redu
ible. On the other hand, the provers of [33℄ 
anmake queries \y 2 L?" to the ora
le for arbitrary strings y (possibly di�erentfrom the input string x), while our prover is only given a witness for the inputstring x.In any 
ase, the notions of prover eÆ
ien
y 
onsidered by [2, 33℄ and relatedpapers, seem mostly interesting from a 
omputational 
omplexity perspe
tive,and do not mat
h the requirements of 
ryptographi
 appli
ations. A 
ru
ialdi�eren
e is that the notion we study here makes sense only for problems inNP, while the results of [2, 33℄ apply to languages outside NP as well.Organization. The rest of the paper is organized as follows. In Se
tion 2 wegive some basi
 de�nitions about statisti
al di�eren
e and the latti
e problemsstudied in this paper. In Se
tion 3 we present and analyze the proof system forCVP. The proof system for SVP is sket
hed in Se
tion 4. Se
tion 5 dis
usses ourlatti
e based identi�
ation s
hemes. Finally, in Se
tion 6 we study Statisti
alDifferen
e, and the problem of designing SZK proofs with eÆ
ient proversfor all problems in SZK \NP. Be
ause of spa
e 
onstraints, most proofs arenot presented here, and 
an be found in the full version of the paper.2 PreliminariesIn this se
tion we re
all some basi
 de�nitions and te
hniques that will be usedin the rest of the paper. For more details the reader is referred to the books [34,35℄ or the papers in the referen
es.2.1 Statisti
al di�eren
eThe statisti
al distan
e between two dis
rete random variables X and Y over a(
ountable) set A is the quantity �(X;Y ) = 12Pa2A jPrfX = ag�PrfY = agj.Statisti
al Differen
e is a 
olle
tion of problems (parameterized by tworeal numbers 0 � � < � � 1) of the form: given two su

in
tly spe
i�ed proba-bility distributions, de
ide whether they are statisti
ally 
lose or statisti
ally farapart. The probability distributions are spe
i�ed by 
ir
uits whi
h sample fromthem. That is, we are given a 
ir
uit X : f0; 1gm ! f0; 1gn whi
h we interpretas spe
ifying the probability distribution X(Um) on f0; 1gn, where Um is theuniform probability distribution over f0; 1gm. More formally, for 0 � � < � � 1,we de�ne the following promise problem.De�nition 1 (Statisti
al Differen
e). Instan
es of promise problem SD�;�are pairs (X;Y ) where X and Y are probability distributions. (X;Y ) is a yesinstan
e if �(X;Y ) � �, and a no instan
e if �(X;Y ) � �. (We have de�nedthese problems as the 
omplements of those de�ned in [8℄, be
ause this formula-tion is more 
onvenient for our purposes.)



In [8℄ it is shown that SD�;� is 
omplete for SZK for all 0 < �=2 < � < �2 <1. In parti
ular SD1=3;2=3 is SZK-
omplete, and SD1=2;1�� is SZK-
omplete forall 0 < � < 1=p2.2.2 Latti
e problems and te
hni
al toolsLet Rm be the m-dimensional Eu
lidean spa
e. A latti
e in Rm is the set ofall integral 
ombinations of n linearly independent ve
tors b1; : : : ;bn in Rm(m � n). The integers n and m are 
alled the rank and dimension of the latti
e,respe
tively. Using matrix notation, if B = [b1; : : : ;bn℄, the latti
e generated bybasis matrix B is L(B) = fBx:x 2 Zng, where Bx is the usual matrix-ve
tormultipli
ation. For 
omputational purposes, B and y are usually restri
ted tohave integer (or, equivalently, rational) entries. In this paper, we will o

asionallyuse real ve
tors in order to simplify the exposition. However, the use of realnumbers is not essential, and integer or rational approximations 
an always besubstituted for real ve
tors whenever they o

ur. Moreover, we often assumethat the latti
e if full rank, i.e., n = m, as any latti
e 
an be transformed into afull-rank real latti
e.Approximate versions of the Shortest Ve
tor Problem and ClosestVe
tor Problem des
ribed in the introdu
tion are 
aptured by the promiseproblems GapSVP
 and GapCVP
 de�ned as follows.De�nition 2. Instan
es of promise problem GapSVP
 are pairs (B; t) whereB 2 Zm�n is a latti
e basis and t 2 Q a rational number. (B; t) is a yes instan
eif kBxk � t for some x 2 Zn n f0g. (B; t) is a no instan
e if kBxk > 
t for allx 2 Zn n f0g.De�nition 3. Instan
es of promise problem GapCVP
 are triples (B;y; t) whereB 2 Zm�n is a latti
e basis, y 2 Zm is a ve
tor and t 2 Q is a rational number.(B;y; t) is a yes instan
e if kBx � yk � t for some x 2 Zn. (B;y; t) is a noinstan
e if kBx� yk > 
t for all x 2 Zn.In our proof systems for latti
e problems we make extensive use of a mod-ular redu
tion te
hnique proposed in [36℄ to emulate the e�e
t of sele
ting apoint uniformly at random from a latti
e. Any latti
e L(B) de�nes a naturalequivalen
e relation on span(B) = Pi bi � R, where two points x;y 2 span(B)are equivalent if x � y 2 L(B). For any latti
e basis B de�ne the half openparallelepiped P(B) = fBx: 0 � xi < 1g. It is easy to see that for any pointx 2 span(B), there exists a unique point y 2 P(B) su
h that x is equivalentto y modulo the latti
e. This unique representative for the equivalen
e 
lass ofx is denoted x mod B. Intuitively, x mod B is the displa
ement of x within thefundamental parallelepiped 
ontaining x. Noti
e that if we �x a (small) pertur-bation ve
tor r, we add it to a latti
e point Bv and redu
e the result modulo B,we get a ve
tor (Bv+ r) mod B = r mod B that does not depend on the latti
epoint Bv from whi
h we started. In other words, if we start from the origin, andsimply 
ompute r mod B, we obtain exa
tly the same distribution.



3 The Closest Ve
tor ProblemIn this se
tion we des
ribe a statisti
al zero-knowledge proof system (in fa
t, aproof of knowledge) with eÆ
ient provers for approximating the 
losest ve
torproblem.Consider an instan
e (B;y; t) of GapCVP
 . Look at a small ball around yand a small ball around a latti
e point Bw 
losest to y. If y and Bw are 
lose toea
h other, the relative volume of the interse
tion of the two balls is quite large.So, if we pi
k a few random points from both balls, with high probability atleast one of them will be in the interse
tion. The proof system works as follows:the prover pi
ks random points from the two balls, redu
es them modulo B,and sends the redu
ed points to the veri�er. Redu
ing the points modulo Bhas the ni
e e�e
t that the resulting distribution 
an be eÆ
iently sampledeven without knowing the latti
e point Bw 
losest to y. (In fa
t, using two balls
entered around y and the origin 0, results in exa
tly the same distribution afterthe redu
tion modulo B. This is a 
ru
ial property to a
hieve zero-knowledge.)Let's say that the total number of points pi
ked by the prover is even. Then,the veri�er 
hallenges the prover asking him to show that either (1) there is aneven number of points from ea
h ball; or (2) there is an odd number of pointsfrom ea
h ball. If the prover 
an answer both 
hallenges, then some point mustbelong to the interse
tion of the two balls, proving that the two balls interse
t,and therefore their 
enters 
annot be too far apart. Intuitively, the proof systemis zero knowledge be
ause all that the veri�er sees is a set of random points froman eÆ
iently samplable distribution.Note that the proof system sket
hed above a
hieves neither perfe
t 
om-pleteness nor perfe
t zero knowledge, but rather has a small (but negligible)
ompleteness error and is statisti
al zero knowledge. The reason is that there isa nonzero probability that all the randomly 
hosen points will lie outside theinterse
tion of the two balls, and in this 
ase the prover will only be able toanswer one of the two 
hallenges. And intuitively, the veri�er learns somethingin 
ase the prover 
annot answer, namely that none of the 
hosen points is inthe interse
tion. Below, we a
hieve perfe
t 
ompleteness by having the provermodify the points 
hosen to ensure that at least one is in the interse
tion (ifneeded). However, this does not yield perfe
t zero knowledge, be
ause now thepoints sent are no longer uniform in the two balls, but have a slightly skeweddistribution that may be hard to sample exa
tly in polynomial time.We now give the formal des
ription of the proof system (P
vp; V
vp). In thedes
ription below k is a parameter to be determined that depends on the valueof 
. In fa
t, the proof system is valid for any value of 
 and k, and the 
hoi
eof these parameters only a�e
ts the zero-knowledge property.The Veri�er. On input (B;y; t), the veri�er V
vp pro
eeds as follows.1. Re
eive k points m1; : : : ;mk 2 Rn from the prover2. Send a uniformly 
hosen random bit q 2 f0; 1g to the prover3. Re
eive k bits 
1; : : : ; 
k and k latti
e points Bv1; : : : ;Bvk and 
he
k thatthey satisfy Pi 
i = q (mod 2) and kmi � (Bvi + 
iy)k � 
t=2 for all i.



The following lemma shows that the proto
ol de�ned by the veri�er is sound,both as an intera
tive proof system and even as a proof of knowledge.Lemma 4 (soundness). If (B;y; t) is a no instan
e of GapCVP
 , then theveri�er V
vp reje
ts with probability at least 1=2 when intera
ting with any proverstrategy P �. Moreover, there is a probabilisti
 algorithm K (the knowledge ex-tra
tor) su
h that if a prover P � makes V
vp a

ept with probability 1=2 + � onsome instan
e (B;y; t), then KP�(B;y; t) outputs a ve
tor w 2 Zn satisfyingkBw� yk � 
t in expe
ted time poly(n)=�.The Prover. Now that we know that the above proof system is sound, we showthat if (B;y; t) is a yes instan
e, then it is always possible to make the veri�era

ept. Suppose (B;y; t) is a yes instan
e of GapCVP
 , i.e., there exists aninteger ve
tor w 2 Zn su
h that ky � Bwk � t. We des
ribe a probabilisti
polynomial time prover P
vp that, given the witness w (or, equivalently, u =y � Bw) as auxiliary input, makes the veri�er a

ept with probability 1. Theprover P
vp, on input (B;y; t) and u = y �Bw, pro
eeds as follows:1. Choose 
1; : : : ; 
k 2 f0; 1g independently and uniformly at random. Also
hoose error ve
tors r1; : : : ; rk 2 B(0; 
t=2) independently and uniformly atrandom. Then, 
he
k if there exists an index i� su
h that kri� + (2
i� �1)uk � 
t=2. If not, set i� = 1 and rede�ne 
i� = 0 and ri� = u=2, sothat kri�+(2
i��1)uk � 
t=2 is 
ertainly satis�ed. Finally, 
ompute pointsmi = 
iy + ri mod B for all i = 1; : : : ; k and send them to the veri�er.2. Wait for the veri�er to reply with a 
hallenge bit q 2 f0; 1g.3. If q = �i
i, then the prover 
ompletes the proof sending bits 
i and latti
eve
tors Bvi = mi � (ri + 
iy) (for i = 1; : : : ; k) to the veri�er. If q 6= �i
i,then the prover sends the same messages to the veri�er, but with 
i� andBvi� repla
ed by 1� 
i� and Bvi� + (2
i� � 1)(y � u).It is 
lear that P
vp 
an be implemented in polynomial time. The reader 
aneasily verify that if the honest veri�er V
vp intera
ts with prover P
vp, then italways a

epts.The Simulator. We prove the zero knowledge property by exhibiting a proba-bilisti
 polynomial-time simulator that outputs the trans
ript of a 
onversationbetween a (simulated) prover and a given 
heating veri�er V � with a probabil-ity distribution that (for appropriate values of 
; k) is statisti
ally 
lose to thatbetween V � and the real prover P
vp.The simulator S
vp, on input (B;y; t), and given bla
k-box a

ess to a (pos-sibly 
heating) veri�er V �, pro
eeds as follows:1. Pi
k random 
1; : : : ; 
k 2 f0; 1g and r1; : : : ; rk 2 B(0; 
t=2), and 
omputemi = 
iy + rj mod B for all i = 1; : : : ; k.2. Pass m1; : : : ;mk to V �, who replies with a query q 2 f0; 1g.99 We 
an assume, without loss of generality, that the veri�er always output a singlebit answer. Any other message 
an be interpreted in some standard way.



3. If q = �
i, then output the trans
ript (fmigki=1; q; f(
i;Bvi)gki=1), whereBvi =mi � (ri + 
iy). If q 6= �
i, then output fail.Theorem 5. If (B;y; t) is a yes instan
e of GapCVP
, then the statisti
al dif-feren
e between the output of the simulator S
vp (
onditioned on the event thatS
vp does not fail), and the intera
tion between V � and the real prover P
vp,is at most 2(1� �(2=
))k, where �(�) is the relative volume of the interse
tionof two unit spheres whose 
enters are at distan
e �.Using the bound �(�) � max� 3exp(�2n=2) ; 1� �pn� on the relative volume ofthe interse
tion of two spheres, 10 we immediately get the following 
orollary.Corollary 6. (P
vp; V
vp) is a statisti
al zero-knowledge proof system with per-fe
t 
ompleteness and soundness error 1=2, provided one of the following 
ondi-tions holds true:{ 
 = 
(pn= logn) and k = poly(n) is a suÆ
iently large polynomial, or{ 
 = 
(pn) and k = !(logn) is any superlogarithmi
 fun
tion of n, or{ 
 = n0:5+
(1) and k = !(1) is any super
onstant fun
tion of n.Negligible Error. As is, the proof system has 
onstant soundness error (1=2),but it is often important to have negligible soundness error (1=n!(1)). There areseveral approa
hes to redu
ing the soundness error, with di�erent advantages:(1) Repeat the proof system `(n) = !(logn) times in parallel. This unfortu-nately does not preserve the zero knowledge property, but does yield a 
onstant-round statisti
ally witness-indistinguishable proof of knowledge with negligiblesoundness error. (Witness indistinguishability means that for any two witnessw and w0, the veri�er's view when the prover uses w is statisti
ally 
lose to itsview when the prover uses w0. See [34℄.)(2) Repeat the proof system `(n) = �(logn) times in parallel and then repeatthe resulting proto
ol !(1) times sequentially. This does preserve zero knowledge,yielding an !(1)-round statisti
al zero-knowledge proof of knowledge.(3) In both of the approa
hes above, the `-fold parallel repetition 
an be
ombined with the k-fold repetition already present in the original proto
ol toobtain more eÆ
ient proto
ols. Consider a modi�
ation of the original proto
ol(P
vp; V
vp), where in addition to sending k ve
tors in the �rst step, the proveralso sends a random k�` matrixM over GF(2) = f0; 1g. The veri�er's 
hallengeis then a random ve
tor q 2 f0; 1g`, and the 
ondition �i
i = q is repla
ed withM
 = q. The advantage of this proto
ol is that it a
hieves both simulation andsoundness error 2�
(k) with a proto
ol that involves only O(k) n-dimensionalve
tors rather than O(k2) as a
hieved by independent repetitions of the originalproto
ol.10 See [26℄ for a prove of the �rst inequality. The se
ond one 
an be proved using similarte
hniques.



4 The Shortest Ve
tor ProblemIn this se
tion we des
ribe a statisti
al zero knowledge proof system (Psvp; Vsvp)for GapSVP
 . The reasons we are interested in the Shortest Ve
tor Prob-lem are both theoreti
al (being SVP a di�erent problem from CVP, it is inter-esting to know if it admits SZK proofs with eÆ
ient prover), and pra
ti
al, asproofs of knowledge for SVP 
an be used in 
onjun
tion with the latti
es of [19℄to yield identi�
ation s
hemes with worst-
ase/average-
ase se
urity guarantees.(See Se
tion 5.) Intuitively, our proof system for GapSVP 
an be thought as a
ombination of the redu
tion from GapSVP
 to GapCVP
 of Goldrei
h, Mi
-
ian
io, Safra and Seifert [37℄, followed by the invo
ation of the proof system forGapCVP des
ribed in the previous se
tion. Things are not as simple be
ausethe redu
tion of [37℄ is not a Karp redu
tion, and in order to solve a shortestve
tor problem instan
e, it requires the solution of (polynomially) many 
losestve
tor problems. So, we 
ombine all the GapCVP instan
es together using theGoldrei
h-Levin hard
ore predi
ate [38℄. This is just the intuition behind theproof system that we are going to des
ribe. In fa
t, our proof system requiresneither the expli
it 
onstru
tion of many GapCVP instan
es, nor the 
ompli-
ated analysis of the Goldrei
h-Levin predi
ate. So, below we brie
y des
ribe theproof system without referen
e to those general tools. For a detailed des
riptionsee the full version of this paper.The basi
 idea is the same as the proof system for the 
losest ve
tor problem,but this time instead of sele
ting points 
lose to the origin or 
lose to the targetve
tor y, we 
onsider balls 
entered around all latti
e points of the form B
,where 
 2 f0; 1gn, and redu
e the points modulo 2B. The prover starts theintera
tion by sending points mi 
lose to randomly 
hosen 
enters B
i. Forea
h su
h point, the prover also sends a binary ve
tor si. If the latti
e does not
ontain short ve
tors, then balls 
entered around di�erent B
 are disjoint (evenafter redu
tion modulo 2B), and the �rst message sent by the prover uniquelydetermines a bitPihsi; 
ii mod 2. Then the veri�er asks the prover to show thatPihsi; 
ii mod 2 = q, where q is a random bit 
hosen by the veri�er. If the prover
an answer both questions, then there must be a messagemi that is 
lose to twodi�erent 
enters (modulo 2B), proving that the latti
e 
ontains short ve
tors.5 Identi�
ation S
hemesAn identi�
ation s
heme is a proto
ol by whi
h one party, Ali
e, 
an repeatedlyprove her identity to other parties in su
h a way that these parties 
annot laterimpersonate Ali
e. Following the now-standard paradigm of [28℄, ID s
hemesare immediately obtained from zero-knowledge proofs of knowledge. It should beremarked that the 
omputational problems underlying our identi�
ation s
hemesare not likely to be NP-hard (
f. [26℄). The same is true for most 
omputationalproblems used in 
ryptography (e.g., fa
toring), so, in some sense, ours is asgood a hardness assumption as any. However, fa
toring is a mu
h more widelystudied assumption than latti
e problems, so our identi�
ation s
hemes shouldbe used with 
aution. The dis
ussion below 
on
entrates on eÆ
ien
y issues.



The proofs of knowledge from Se
tion 3, give rise to !(1)-round ID s
hemes,be
ause witness-indistinguishability is not enough to guarantee the se
urity.However, we 
an obtain a 3-round identi�
ation s
heme as follows. First, we
onsider a new problem OR-GapCVP
 whose instan
es are pairs (x1; x2) ofGapCVP
 instan
es, and whose yes instan
es are those for whi
h at least oneof the xi's is a yes instan
e of GapCVP
 . Using a te
hnique from [32℄, we 
an
onvert our proof system into one for OR-GapCVP
 . Parallel repetition yieldsa 
onstant-round statisti
ally witness-indistinguishable proof of knowledge withnegligible soundness error. For su
h `OR' problems, witness indistinguishabilityimplies \witness hiding," whi
h suÆ
es for the identi�
ation s
heme [39℄ (
f.,[34℄). Details will be given in the full version of the paper.We stress that, unlike all known 
ryptosystems based on latti
e problems [24,23℄, these identi�
ation s
hemes only require the generation of latti
es in whi
hthe approximateClosest Ve
tor Problem (resp. Shortest Ve
tor Prob-lem) is hard together with a 
lose ve
tor (resp. short ve
tor). In parti
ular, wedo not need to generate an additional \short" basis, nor do we need \uniqueshort ve
tors" or \hidden hyperplanes". In parti
ular, this opens up more pos-sibilities for using latti
es with potential advantages both in terms of eÆ
ien
yand se
urity. As an example, for identi�
ation s
hemes based on SVP one 
anuse the random 
lass of latti
es of [19, 22℄, whi
h, for appropriate 
hoi
e of theparameters, results in identi�
ation s
hemes that are at least as hard to break(on the average) as the worst 
ase instan
e of approximating GapSVP in theworst 
ase within fa
tor ~O(n4), or approximating other latti
e problems (shortestlinearly independent ve
tors or 
overing radius) within fa
tor ~O(n3). Alterna-tively, one 
an use latti
es with spe
ial stru
ture like the 
y
li
 and quasi-
y
li
latti
es of [20℄, or the 
onvolutional modular latti
es of [25℄ (but possibly withdi�erent, more se
ure, values of the parameters, sin
e we do not need to embeda de
ryption trapdoor), in whi
h the basis has a more 
ompa
t representation(almost linear in the se
urity parameter, rather than the standard matrix repre-sentation, whose quadrati
 size has been a pra
ti
al barrier for the use of latti
e
ryptosystems.) Another very interesting possibility for identi�
ation s
hemesbased on our CVP proof system is to use latti
es where CVP with prepro
essing(CVPP) is hard. This is a variant of the standard CVP problem introdu
edin [40℄ and studied in [41, 42℄, where �nding 
lose latti
e ve
tors is hard even ifthe latti
e is �xed, and the only input is the target ve
tor. This allows to usethe same latti
e B for all users, and hardwire the des
ription of the latti
e B inthe key generation, identi�
ation and veri�
ation algorithms. When a new userwants to generate a key, he 
hooses a random short error ve
tor r (the se
retkey) and 
omputes y = r mod B as its publi
 key. The se
urity of the s
hemerelies on the fa
t that approximating CVP in the latti
e generated by B (forappropriately 
onstru
ted, but �xed, B) is hard. The advantage is that both these
ret and publi
 keys are just a single ve
tor whi
h takes storage proportionalto dimension of the latti
e n (the se
urity parameter),11 rather than a matrix11 This is obvious for the se
ret short ve
tor r. The publi
 ve
tor y 
an be mu
h biggerbe
ause it 
ontains large integer entries. Fortunately, as shown in [36℄, it is possible



(representing the latti
e) whi
h in general takes storage at least proportional ton2. There are still big gaps between our understanding of CVPP and its 
ryp-tographi
 appli
ability: the strongest inapproximability results known to date[42℄ only show that CVPP is hard to approximate within fa
tors smaller than3, while our system requires inapproximability within pn. More importantly, allknown lower bounds [40{42℄ only establish the hardness in the worst-
ase (NP-hardness), while for 
ryptographi
 appli
ations one needs average-
ase hardness.Still, the possibility that further developments about the 
omplexity of latti
eproblems might lead to pra
ti
al and provably se
ure identi�
ation s
hemes withworst-
ase/average-
ase guarantees is very appealing. In this perspe
tive, estab-lishing a worst-
ase/average-
ase 
onne
tion for CVPP along the lines of [19,22℄ would be very interesting.6 Statisti
al Di�eren
eIn this se
tion, our fo
us will be the problem SD�;� for various values of 0 �� < � � 1. Consider the SZK-
omplete problem SD1=2;1��, for 1=p2 > � > 0.Sin
e we do not know if SZK �NP, we do not hope to give a proof system witheÆ
ient provers for this language. Instead we 
onsider the limit problem SD1=2;1obtained setting � = 0, i.e. de
iding whether two distributions are statisti
ally
lose or have disjoint supports. Unfortunately, this problem is not known tobe 
omplete for SZK. Note that SD1=2;1 is in NP, as 
oin tosses rX , rY forwhi
h the 
ir
uits produ
e identi
al samples (i.e. X(rX) = Y (rY )) are a witnessthat (X;Y ) is a yes instan
e. We will prove that SD1=2;1 has a statisti
al zero-knowledge proof system with an eÆ
ient prover.We now state a useful lemma that allows us to make the statisti
al di�eren
eexponentially small in yes instan
es of SD1=2;1.Lemma 7 (XOR Lemma [8℄). Given probability distributions X0; X1 and aparameter k, de�ne probability distributions Y
 = (x1; : : : ; xk) (for 
 2 f0; 1g)obtained by uniformly 
hoosing (b1; : : : ; bk) f0; 1gk su
h that b1�� � �� bk = 
,and then sampling ea
h xi  Xbi independently. Then �(Y0; Y1) = �(X0; X1)k.Thus, given an instan
e (X0; X1) of SD1=2;1, this lemma shows how to 
on-stru
t 
ir
uits for a new pair of distributions (Y0; Y1) whose statisti
al di�eren
eis exponentially small if (X0; X1) is a yes instan
e, and whose supports aredisjoint if (X0; X1) is a no instan
e. We 
an use this to obtain simple statisti-
al zero knowledge proof system for SD1=2;1, mimi
king the well-known proofsystems for Quadrati
 Residuosity [1℄ and Graph Isomorphism [4℄: (1)First, the prover sends the veri�er y  Y0, (2) and the veri�er replies sendingb  f0; 1g to the prover; (3) then the prover sends r  fs : Yb(s) = yg tothe veri�er, (4) and the veri�er a

epts if Yb(r) = y. It 
an be veri�ed that theabove proof system has soundness error 1=2, 
ompleteness error 1=2k+1, and isto sele
t the basis B in an optimally se
ure way that results also in redu
ed ve
torsy with small bit-size.



statisti
al zero knowledge with simulator deviation 1=2k+1 (
f., [27℄). However,even though SD1=2;1 2 NP, it does not appear that the prover strategy 
an beimplemented in polynomial time given a witness. (If the veri�er sele
ts b = 0, theprover 
an respond with the 
oin tosses it used to generate y, but if the veri�ersele
ts b = 1, the prover must be able to �nd 
ollisions between the 
ir
uits Y0and Y1, whi
h may be infeasible.)To obtain eÆ
ient provers for SD1=2;1 itself, we use the ideas of Itoh, Ohta,and Shizuya [29℄. The key 
on
ept is that of problem dependent 
ommitment.This is a 
ommitment s
heme where the sender and re
eiver get as auxiliary inputan instan
e x of a promise problem � . The operations performed by the proto
oldepend on the value of x, and the proto
ol has di�erent se
urity propertiesdepending on whether x is a yes or a no instan
e of � . Typi
ally, the proto
olis required to be se
ret when x 2 �yes and unambiguous when x 2 �no, orvi
e-versa. As usual, a problem dependent 
ommitment is statisti
ally se
ure ifthe se
re
y and unambiguity properties hold in a statisti
al sense.Itoh, Ohta, and Shizuya [29℄ 
onsidered only nonintera
tive problem-dependent
ommitment s
hemes in whi
h both se
urity properties are perfe
t. (Noti
e thatany nonintera
tive statisti
ally unambiguous 
ommitment is ne
essarily perfe
tlyunambiguous.) They proved that if a problem � has a nonintera
tive problem-dependent 
ommitment s
heme whi
h is perfe
tly se
ret on yes instan
es andperfe
tly unambiguous on no instan
es, then � has a perfe
t zero-knowledgeproof system with an eÆ
ient prover. We observe that this result 
an be gener-alized as followsTheorem 8 (generalizing [29℄). Suppose a promise problem � is in NP,with NP relation R, and that � has a problem-dependent 
ommitment s
hemewhi
h is statisti
ally se
ret on yes instan
es and statisti
ally unambiguous on noinstan
es. Then � has a statisti
al zero-knowledge proof system with an eÆ
ientprover (using any R-witness).We apply the theorem to SD1=2;1, by de�ning a problem dependent 
ommit-ment for this problem as follows. On input (b; (X0; X1); 1k), the sender 
ommitsto b by sending the re
eiver y  Yb, where Yb is obtained by applying theXOR Lemma (Lemma 7) to (X0; X1) with parameter k. In the reveal phase,the sender reveals b and the 
oin tosses used to generate y. The re
eiver 
he
ksthat Yb(r) = y. The reader 
an easily 
he
k that this 
ommitment s
heme isstatisti
ally se
ret on yes instan
es and perfe
tly unambiguous on no instan
es.Using Theorem 8, we get the following result.Theorem 9. SD1=2;1 has a statisti
al zero-knowledge proof system with an ef-�
ient prover.6.1 EÆ
ient provers for all of SZK?As dis
ussed in the introdu
tion, part of our motivation in this work is thegeneral question of whether every problem in SZK \NP has a statisti
al zero-knowledge proof system with an eÆ
ient prover. The following theorem suggeststhree possible approa
hes to solve this problem.



Theorem 10. If any of the following 
onditions hold, every problem in SZK \NP has a statisti
al zero-knowledge proof with an eÆ
ient prover:1. SD1=3;2=3 has a statisti
ally se
ure problem-dependent 
ommitment s
heme.2. SD1=3;2=3 redu
es to SD1=2;1 via a randomized Karp redu
tion with one-sidederror (even 
onstant error).3. Any NP problem that redu
es to SD1=3;2=3, also redu
es to SD1=2;1.The �rst approa
h is proved using the 
losure of SZK under 
omplementa-tion, and using the fa
t that if a promise problem � redu
es (via a randomizedKarp redu
tion with one-sided negligible error probability) to a promise prob-lem � , and � has a problem-dependent 
ommitment s
heme, then � also has aproblem-dependent 
ommitment s
heme with the same se
urity properties. These
ond approa
h is just a way to prove the �rst 
ondition, using the fa
t thatone-sided error in Karp redu
tions to SD1=2;1 
an be made negligible. The lastapproa
h, essentially asks to prove that SD1=2;1 is 
omplete for SZK \NP.The proof systems des
ribed in this se
tion di�er in one important way fromprevious ones. All previous proof systems for variants of Statisti
al Differ-en
e e.g. [8, 9, 43℄, used the input 
ir
uits as \bla
k boxes." That is, the use ofthe 
ir
uits by the veri�er and prover 
onsisted solely of evaluating the 
ir
uitson various inputs, and never referred to the internal stru
ture of the 
ir
uits.It is not diÆ
ult to show, using 
onstru
tions like [11℄, that no proto
ol of thisform 
an be a statisti
al zero-knowledge proof with an eÆ
ient prover for evenSD0;1 (if one-way fun
tions exist). The proof system of Theorem 9 is not bla
kbox, however, and does make use of the internal workings of the 
ir
uits (due tothe te
hniques of [29℄, whi
h in turn use [4℄). This suggests that this approa
hdoes indeed have potential to resolve questions that may have previously seemedintra
table.We 
on
lude this se
tion by showing yet another relationship between problem-dependent 
ommitment s
hemes and SZK. If we remove the assumption thatproblem � is in NP from the hypothesis of Theorem 8, we 
an still 
on
ludethat � has an SZK proof system, although not ne
essarily one with eÆ
ientprover.Proposition 11. If a problem � has a statisti
ally se
ure problem-dependent
ommitment s
heme, then � 2 SZK.A
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