
Proceedings of the International Congress of Mathematicians
Hyderabad, India, 2010

The Unified Theory of Pseudorandomness∗

Salil Vadhan†

Abstract. Pseudorandomness is the theory of efficiently generating objects that “look
random” despite being constructed with little or no randomness. One of the achievements
of this research area has been the realization that a number of fundamental and widely
studied “pseudorandom” objects are all almost equivalent when viewed appropriately.
These objects include pseudorandom generators, expander graphs, list-decodable error-
correcting codes, averaging samplers, and hardness amplifiers. In this survey, we describe
the connections between all of these objects, showing how they can all be cast within a
single “list-decoding framework” that brings out both their similarities and differences.

Mathematics Subject Classification (2000). Primary 68Q01; Secondary 94B99,

68R01, 68Q87, 68-02.

Keywords. pseudorandom generators, expander graphs, list decoding, error-correcting

codes, samplers, randomness extractors, hardness amplification

1. Introduction

Pseudorandomness is the theory of efficiently generating objects that “look ran-
dom” despite being constructed with little or no randomness. Over the past 25
years, it has developed into a substantial area of study, with significant implica-
tions for complexity theory, cryptography, algorithm design, combinatorics, and
communications theory. One of the achievements of this line of work has been
the realization that a number of fundamental and widely studied “pseudorandom”
objects are all almost equivalent when viewed appropriately. These objects include:

Pseudorandom Generators These are procedures that stretch a short “seed”
of truly random bits into a long string of “pseudorandom” bits that cannot
be distinguished from truly random by any efficient algorithm. In this article,
we focus on methods for constructing pseudorandom generators from boolean
functions of high circuit complexity.

Expander Graphs Expanders are graphs that are sparse but nevertheless highly
connected. There are many variants of expander graphs, but here we focus on
the classical notion of vertex expansion, where every subset of not-too-many
vertices has many neighbors in the graph.

∗An earlier version of this article appeared in SIGACT News [Vad1].
†Supported by NSF grant CCF-0133096, ONR grant N00014-04-1-0478, and US-Israel BSF

grant 2002246.

2 S. Vadhan

Error-Correcting Codes These are methods for encoding messages so that even
if many of the symbols are corrupted, the original message can still be recov-
ered. Here we focus on list decoding, where there are so many corruptions
that uniquely decoding the original message is impossible, but it is still may
be possible to produce a short list of possible candidates.

Randomness Extractors These are procedures that extract almost uniformly
distributed bits from sources of biased and correlated bits. Here we focus
on extractors for general sources, where all we assume is a lower bound on
the amount of “entropy” in the source and only get a single sample from
the source. Extractors for such sources necessarily use a small number of
additional truly random bits as a “seed” for extraction.

Samplers These are randomness-efficient methods for sampling elements of a
large universe so that approximately the correct fraction of samples will land
in any subset of the universe with high probability.

Hardness Amplifiers These are methods for converting worst-case hard boolean
functions into ones that are average-case hard.

These objects are all “pseudorandom” in the sense that a randomly chosen object
can be shown to have the desired properties with high probability, and the main
goal is typically to find explicit constructions — ones that are deterministic and
computationally efficient — achieving similar parameters. Each of these objects
was introduced with a different motivation, and originally developed its own body
of research. However, as mentioned above, research in the theory of pseudoran-
domness has uncovered intimate connections between all of them. In recent years,
a great deal of progress has been made in understanding and constructing each
of these objects by translating intuitions and techniques developed for one to the
others.

The purpose of this survey is to present the connections between these objects
in a single place, using a single language. Hopefully, this will make the connections
more readily accessible and usable for non-experts and those familiar with some
but not all of the objects at hand. In addition, it is also meant to clarify the
differences between the objects, and explain why occasional claims of “optimal”
constructions of one type of object do not always lead to improved constructions
of the others.

Naturally, describing connections between six different notions in a short article
makes it impossible to do justice to any of the objects in its own. Thus, for mo-
tivation, constructions, and applications, the reader is referred to existing surveys
focused on the individual objects [CRT, Kab, HLW, Sud, Gur, NT, Sha, Gol1, Tre2]
or the broader treatments of pseudorandomness in [Mil, Tre3, Gol3, AB, Vad2]. In
particular, the monograph [Vad2] develops the subject in a way that emphasizes
the connections described here.

The framework used in this survey extends to a number of other pseudorandom
objects, such as “randomness condensers,” but we omit these extensions due to
space constraints. (See [Vad2].)

Unified Theory of Pseudorandomness 3

Notation. For a natural number N ∈ N, [N] denotes the set {1, . . . , N}. For a
discrete random variable X, x R←X means that x is sampled according to X. For
a set S, US is a random variable distributed uniformly over S. For convenience,
we will sometimes write x R← S as shorthand for x R← US . All logs are base 2.

We make extensive use of asymptotic notation. For a nonnegative function
f = f(x1, . . . , xk), we write O(f) (resp., Ω(f)) as shorthand for an unspecified
nonnegative function g = g(x1, . . . , xk) for which there is a constant c > 0 such
that g(x1, . . . , xk) ≤ c · f(x1, . . . , xk) (resp., g(x1, . . . , xk) ≥ c · f(x1, . . . , xk)) for
all settings of x1, . . . , xk. We write poly(f1, . . . , ft) for an unspecified function
bounded by (f1 + · · ·+ ft)c + c for a positive constant c, and Õ(f) for a function
bounded by f · poly(log f). For a nonnegative function f(x) of one variable, we
write o(f) for an unspecified function g(x) such that limx→∞ g(x)/f(x) = 0.

2. The Framework

As we will see, all of the objects we are discussing can be syntactically viewed as
functions Γ : [N] × [D] → [M]. We will show how the defining properties of each
of the objects can be cast in terms of the following notion.

Definition 1. For a function Γ : [N] × [D] → [M], a set T ⊆ [M], and an
agreement parameter ε ∈ [0, 1), we define

LISTΓ(T, ε) = {x ∈ [N] : Pr[Γ(x, U[D]) ∈ T] > ε}

We also define LISTΓ(T, 1) = {x ∈ [N] : Pr[Γ(x, U[D]) ∈ T] = 1}.

In general, it will be possible to characterize each of the pseudorandom objects
by a condition of the following form:

“For every subset T ∈ C, we have |LISTΓ(T, ε)| ≤ K.”

Here ε ∈ [0, 1] and K ∈ [0, N] will be parameters corresponding to the “quality”
of the object, and we usually wish to minimize both. C will be a class of subsets
of [M], sometimes governed by an additional “quality” parameter. Sometimes the
requirement will be that the size of LISTΓ(T, ε) is strictly less than K, but this is
just a matter of notation, amounting to replacing K in the above formulation by
dKe − 1.

The notation “LISTΓ(·, ·)” comes from the interpretation of list-decodable error-
correcting codes in this framework (detailed in the next section), where T corre-
sponds to a corrupted codeword and LISTΓ(T, ε) to the list of possible decodings.
This list-decoding viewpoint turns out to be very useful for casting all of the objects
in the same language. However, this is not the only way of looking at the objects,
and indeed the power of the connections we describe in this survey comes from the
variety of perspectives they provide. In particular, many of the connections were
discovered through the study of randomness extractors, and extractors remain a

4 S. Vadhan

powerful lens through which to view the area. The list-decoding view of extractors,
and consequently of many of the other objects presented here, emerged through a
sequence of works, and was crystallized in paper of Ta-Shma and Zuckerman [TZ].

Our notation (e.g. the parameters N ,M ,D, K, ε) follows the literature on
extractors, and thus is nonstandard for some of the objects. We also follow the
convention from the extractor literature that n = logN , d = logD, m = logM ,
and k = logK. While it is not necessary for the definitions to make sense, in some
cases it is more natural to think of N , D, and/or M as a power of 2, and thus
the sets [N], [D], and [M] as corresponding to the set of bit-strings of length n,
d, and m, respectively. In some cases (namely, list-decodable codes and hardness
amplifiers), we will restrict to functions in which y is a prefix of Γ(x, y), and then it
will be convenient to denote the range by [D]× [q] rather than [M]. This syntactic
constraint actually leads to natural variants (sometimes referred to as “strong” or
“seed-extending” variants) of the other objects, too, but we do not impose it here
for sake of generality and consistency with the most commonly used definitions.

Much of the work on the objects are discussing is concerned with giving explicit
constructions, which correspond to the function Γ : [N]× [D]→ [M] being deter-
ministically and efficiently computable, e.g. in time poly(n, d). However, since our
focus is on the connections between the objects rather than their constructions,
we will generally not discuss explicitness except in passing.

3. List-Decodable Codes

We begin by describing how the standard notion of list-decodable codes can be
cast in the framework, because it motivates the notation LISTΓ(·, ·) and provides
a good basis for understanding the other objects.

A code is specified by an encoding function mapping n-bit messages to code-
words consisting of D symbols over an alphabet of size q. More generally, it can
be a function Enc : [N] → [q]D. (In the coding literature, the message alphabet
is usually taken to be the same as the codeword alphabet, which translates to a
scaling of the message length by a factor of log q. In addition, the message length
is usually denoted by k rather than n and the codeword length is n rather than D.)
The goal is to define the function Enc so that if a codeword Enc(x) is corrupted in a
significant number of symbols and one only receives the corrupted string r ∈ [q]D,
the message x can still be recovered. List-decodable codes are designed for a setting
where the number of corruptions is too large to hope for uniquely decoding x, and
thus we settle for getting a short list of possible candidates.

Definition 2. A code Enc : [N] → [q]D is (ε,K) list-decodable if for every “re-
ceived word” r ∈ [q]D, there are at most K messages x ∈ [N] such that Enc(x) and
r agree in greater than a 1/q + ε fraction of positions.

This definition says that if we receive a string r ∈ [q]D that we know has
resulted from corrupting a codeword Enc(x) in less than a 1− (1/q+ ε) fraction of
positions, then we can pin down the message x to one of at most K possibilities. K

Unified Theory of Pseudorandomness 5

is thus called the list size. Note that we expect a uniformly random string r R← [q]D

to agree with most codewords in roughly a 1/q fraction of positions so we cannot
expect to do any meaningful decoding from agreement 1/q; this is why we ask for
agreement greater than 1/q + ε.

Naturally, one wants the agreement parameter ε to be as small possible and
the (relative) rate ρ = logN/(D log q) of the code to be as large as possible.

In coding theory, one typically considers both ε and ρ to be fixed constants
in (0, 1), while the message length n = logN tends to infinity and the alphabet
size remains small (ideally, q = O(1)). The main challenge is to achieve an op-
timal tradeoff between the rate and agreement, while maintaining a list size K
polynomially bounded in the message length n. Indeed, we usually also want an
efficient algorithm that enumerates all the possible decodings x in time polynomial
in n, which implies a polynomial bound on the list size. There has been dramatic
progress on this challenge in the recent years; see the surveys [Sud, Gur].

To cast list-decodable codes in our framework, note that given a code Enc :
[N]→ [q]D, we can define a function Γ : [N]× [D]→ [D]× [q] by

Γ(x, y) = (y,Enc(x)y). (1)

Note that the range of Γ is [D]×[q] and it has the property that the first component
of Γ(x, y) is always y. Moreover, given any Γ with this property, we can obtain a
corresponding code Enc.

Proposition 3. Let the code Enc : [N] → [q]D correspond to the function Γ :
[N] × [D] → [D] × [q] via Equation (1). Then Enc is (ε,K) list-decodable if and
only if

∀r ∈ [q]D |LISTΓ(Tr, 1/q + ε)| ≤ K,
where Tr = {(y, ry) : y ∈ [D]}.

Proof. It suffices to show that for every r ∈ [q]D and x ∈ [N], we have x ∈
LISTΓ(Tr, 1/q + ε) iff Enc(x) agrees with r in greater than a 1/q + ε fraction of
places. We show this as follows:

x ∈ LISTΓ(Tr, 1/q + ε) ⇔ Pr
y

R←[D]

[Γ(x, y) ∈ Tr] > 1/q + ε

⇔ Pr
y

R←[D]

[(y,Enc(x)y) ∈ Tr] > 1/q + ε

⇔ Pr
y

R←[D]

[Enc(x)y = ry] > 1/q + ε

In addition to the particular range of parameters typically studied (e.g. the
small alphabet size q), the other feature that distinguishes list-decodable codes
from many of the other objects described below is that it only considers sets of
the form Tr ⊆ [D] × [q] for received words r ∈ [q]D. These sets contain only one
element for each possible first component y ∈ [D], and thus are of size exactly
D. Note that as the alphabet size q grows, these sets contain a vanishingly small
fraction of the range [D]× [q].

6 S. Vadhan

4. Samplers

Suppose we are interested in estimating the average value of a boolean function
T : [M] → {0, 1} on a huge domain [M], given an oracle for T . The Chernoff
Bound tells us that if we take D = O(log(1/δ)/ε2) independent random samples
from [M], then with probability at least 1 − δ, the average of T on the sample
will approximate T ’s global average within an additive error of ε. However, it is
well known that these samples need not be generated independently; for example,
samples generated according to a k-wise independent distribution or by a random
walk on an expander graph have similar properties [CG2, BR, SSS, Gil]. The ad-
vantage of using such correlated sample spaces is that the samples can be generated
using many fewer random bits than independent samples; this can be useful for
derandomization and or simply because it provides a compact representation of
the sequence of samples.

The definition below abstracts this idea of a procedure that uses n = logN
random bits to generateD samples from [M] with the above average-approximation
property.

Definition 4 ([BR]1). A sampler Smp for domain size M is given “coin tosses”
x

R← [N] and outputs samples z1, . . . , zD ∈ [M]. We say that Smp is a (δ, ε)
averaging sampler if for every function T : [M]→ {0, 1}, we have

Pr
(z1,...,zD)

R←Smp(U[N])

[
1
D

∑
i

T (zi) ≤ µ(T) + ε

]
≥ 1− δ,

where µ(T) def= E[T (U[M])].

Note that the definition only bounds the probability that the sample-average
deviates from µ(T) from above. However, a bound in both directions can be
obtained by applying the above definition also to the complement of T , at the
price of a factor of 2 in the error probability δ. (Considering deviations in only one
direction will allow us to cast samplers in our framework without any slackness in
parameters.) We note that the above definition can be also generalized to functions
T that are not necessarily boolean, and instead map to the real interval [0, 1]. Non-
boolean samplers and boolean samplers turn out to be equivalent up to a small
loss in the parameters [Zuc2].

We note that one can consider more general notions of samplers that make
adaptive oracle queries to the function T and and/or produce their estimate of
µ(T) by an arbitrary computation on the values returned (not necessarily taking
the sample average). In fact, utilizing this additional flexibility, there are known
explicit samplers that achieve better parameters than we know how to achieve with
averaging samplers. (For these generalizations, constructions of such samplers, and
discussion of other issues regarding samplers, see the survey [Gol1].) Nevertheless,

1Bellare and Rogaway [BR] referred to these as oblivious samplers, but they were renamed
averaging samplers by Goldreich [Gol1].

Unified Theory of Pseudorandomness 7

some applications require averaging samplers, and averaging samplers are also more
closely related to the other objects we are studying.

In terms of the parameters, one typically considers M , ε, and δ as given, and
seeks to minimize both the number n = logN of random bits and the number
D of samples. Usually, complexity is measured as a function of m = logM ,
with ε ranging between constant and 1/poly(m), and δ ranging between o(1) and
2−poly(m).

Samplers can be cast rather directly into our framework as follows. Given a
sampler Smp for domain size M that generates D samples using coin tosses from
[N], we can define Γ : [N]× [D]→ [M] by setting

Γ(x, y) = the y’th sample of Smp on coin tosses x. (2)

Conversely, any function Γ : [N] × [D] → [M] yields a sampler. The property of
Smp being an averaging sampler can be translated to the “list-decodability” of Γ
as follows.

Proposition 5. Let Smp be a sampler for domain size M that generates D sam-
ples using coin tosses from [N], and let Γ : [N] × [D] → [M] be the function
corresponding to Smp via Equation (2). Then Smp is a (δ, ε) averaging sampler if
and only if

∀T ⊆ [M] |LISTΓ(T, µ(T) + ε)| ≤ K,

where K = δN and µ(T) def= |T |/M .

Proof. We can view a function T : [M] → {0, 1} as the characteristic function of
a subset of [M], which, by abuse of notation, we also denote by T . Note that
LISTΓ(T, µ(T) + ε) is precisely the set of coin tosses x for which Smp(x) outputs
a sample on which T ’s average is greater than µ(T) + ε. Thus, the probability of
a bad sample is at most δ iff |LISTΓ(T, µ(T) + ε)| ≤ δN .

Let’s compare the characterization of samplers given by Proposition 5 to the
characterization of list-decodable codes given by Proposition 3. One difference is
that codes correspond to functions Γ where Γ(x, y) always includes y as a prefix.
This turns out to be a relatively minor difference, and most known samplers can
be modified to have this property. A major difference, however, is that for list-
decodable codes, we only consider decoding from sets of the form Tr for some
received word r ∈ [q]D. Otherwise, the two characterizations are identical. (Note
that µ(Tr) = 1/q, and bounding K and bounding δ are equivalent via the relation
K = δN .) Still, the settings of parameters typically considered in the two cases
are quite different. In codes, the main growing parameter is the message length
n = logN , and one typically wants the alphabet size q to be a constant (e.g.
q = 2) and the codeword length D to be linear in n. Thus, the range of Γ is of size
M = D · q = O(logN). In samplers, the main growing parameter is m = logM ,
which is the number of random bits needed to select a single element of the universe
[M] uniformly at random, and one typically seeks samplers using a number random
bits n = logN that is linear (or possibly polynomial) in m. Thus, M = NΩ(1), in

8 S. Vadhan

sharp contrast to the typical setting for codes. Also in contrast to codes, samplers
are interesting even when δ is a constant independent of N (or vanishes slowly as
a function of N). In such a case, the number of samples can be independent of N
(e.g. in an optimal sampler, D = O(log(1/δ)/ε2). But constant δ in codes means
that the list size K = δN is a constant fraction of the message space, which seems
too large to be useful from a coding perspective. Instead, the list size for codes
is typically required to be K = poly(n) = poly(logN), which forces the codeword
length D to be at least as large as the message length n = logN .

5. Expander Graphs

Expanders are graphs with two seemingly contradictory properties. On one hand,
they have very low degree; on the other, they are extremely well-connected. Ex-
panders have numerous applications in theoretical computer science, and their
study has also turned out to be mathematically very rich; see the survey [HLW].

There are a variety of measures of expansion, with close relationships between
them, but here we will focus on the most basic measure, known as vertex expansion.
We restrict attention to bipartite graphs, where the requirement is that every set
of left-vertices that is not too large must have “many” neighbors on the right. We
allow multiple edges between vertices. We require the graph to be left-regular, but
it need not be right-regular.

Definition 6. Let G be a left-regular bipartite multigraph with left vertex set [N],
right vertex set [M], and left degree D. G is an (= K,A) expander if every left-
set S of size at least K has at least A · K neighbors on the right. G is a (K,A)
expander if it is a (= K ′, A) expander for every K ′ ≤ K.

The classic setting of parameters for expanders is the balanced one, where
M = N , and then the goal is to have the degree D and the expansion factor
A to both be constants independent of the number of vertices, with A > 1 and
expansion achieved for sets of size up to K = Ω(M). However, the imbalanced
case M < N is also interesting, and then even expansion factors A smaller than 1
are nontrivial (provided A > M/N).

We can cast expanders in our framework as follows. For a left-regular bipartite
multigraph G with left vertex set [N], right vertex set [M], and left degree D, we
define the neighbor function Γ : [N]× [D]→ [M] by

Γ(x, y) = the y’th neighbor of x (3)

Proposition 7. Let G be a left-regular bipartite multigraph with left vertex set
[N], right vertex set [M], and left degree D, and let Γ : [N] × [D] → [M] be the
neighbor function corresponding to G via Equation (3). Then G is an (= K,A)
expander if and only if

∀T ⊆ [M] s.t. |T | < AK |LISTΓ(T, 1)| < K. (4)

Unified Theory of Pseudorandomness 9

Thus, G is a (K,A) expander iff for every T ⊆ [M] of size less than AK, we have
|LISTΓ(T, 1)| < |T |/A.

Proof. We show that G fails to be an (= K,A) expander iff Condition (4) is false.
If G is not an (= K,A) expander, then there is a left-set S ⊆ [N] of size at least

K with fewer than AK neighbors on the right. Let T be the set of neighbors of S.
Then |T | < AK but S ⊆ LISTΓ(T, 1), so |LISTΓ(T, 1)| ≥ K, violating Condition
(4).

Conversely, suppose that Condition (4) fails. Then there is a right-set T ⊆ [M]
of size less than AK for which |LISTΓ(T, 1)| ≥ K. But the neighbors of LISTΓ(T, 1)
are all elements of T , violating expansion.

We now compare the characterization of expanders given in Proposition 7 to
those for list-decodable codes and samplers. First, note that we quantify over all
sets T of a bounded size (namely, smaller than AK). In codes, the sets T were also
of a small size but also restricted to be of the form Tr for a received word r. In sam-
plers, there was no constraint on T . Second, we only need a bound on |LISTΓ(T, 1)|,
which is conceivably easier to obtain than a bound on |LISTΓ(T, µ(T) + ε)| as in
codes and samplers. Nevertheless, depending on the parameters, vertex expansion
(as in Definition 6 and Proposition 7) often implies stronger measures of expansion
(such as a spectral gap [Alo] and randomness condensing [TUZ]), which in turn
imply bounds on |LISTΓ(T, µ(T) + ε)|.

The typical parameter ranges for expanders are more similar to those for sam-
plers than for those of codes. Specifically, N and M tend to be of comparable
size; indeed, the classic case is N = M , and even in the unbalanced case, they
are typically polynomially related. However, for expanders, there is no parameter
ε. On the other hand, there is something new to optimize, namely the expansion
factor A, which is the ratio between the size of T and the list size K. In partic-
ular, to have expansion factor larger than 1 (the classic setting of parameters for
expansion), we must have a list size that is smaller than |T |. In samplers, however,
there is no coupling of the list size and |T |; the list size K = δN depends on the
error probability δ, and should be apply for every T ⊆ [M]. With list-decodable
codes, the set T = Tr is always small (of size D), but the difference between list
size D and, say, D/2 is typically insignificant.

Despite the above differences between codes and expanders, recent construc-
tions of list-decodable codes have proved useful in constructing expanders with
near-optimal expansion factors (namely, A = (1 − ε)D) via Proposition 7 [GUV].
A formulation of expansion similar to Proposition 7 also appeared in [GT].

6. Randomness Extractors

A randomness extractor is a function that extracts almost-uniform bits from a
source of biased and correlated bits. The original motivation for extractors was
the simulation of randomized algorithms with physical sources of randomness, but
they have turned out to have a wide variety of other applications in theoretical

10 S. Vadhan

computer science. Moreover, they have played a unifying role in the theory of pseu-
dorandomness, and have been the avenue through which many of the connections
described in this survey were discovered. History, applications, and constructions
of extractors are described in more detail in [NT, Sha].

To formalize the notion of an extractor, we need to model a “source of biased
and correlated bits” and define what it means for the output of the extractor to
be “almost uniform.” For the former, we adopt a very general notion, advocated
in [CG1, Zuc1], where we only require that the source has enough randomness in
it, as measured by the following variant of entropy.

Definition 8. The min-entropy of a random variable X is

H∞(X) = min
x∈Supp(X)

log(1/Pr[X = x]).

X is a k-source if H∞(X) ≥ k. Equivalently, X is a k-source if Pr[X = x] ≤ 2−k

for all x.

Intuitively, we think of a k-source as having “k bits of randomness” in it. For
example, a random variable that is uniformly distributed over any K = 2k strings
is a k-source.

For the quality of the output of the extractor, we use a standard measure of
distance between probability distributions.

Definition 9. The statistical difference between random variables X and Y taking
values in a universe [M] is defined to be

∆(X,Y) = max
T⊆[M]

|Pr[X ∈ T]− Pr[Y ∈ T]| = max
T⊆[M]

Pr[X ∈ T]− Pr[Y ∈ T].

X and Y are ε-close if ∆(X,Y) ≤ ε. Otherwise, we say they are ε-far.

The equivalence between the formulations of statistical difference with and
without the absolute values can be seen by observing that Pr[X ∈ T] − Pr[Y ∈
T] = −(Pr[X ∈ T]− Pr[Y ∈ T]).

Ideally we’d like an extractor to be a function Ext : [N] → [M] such that for
every k-source X taking values in [N], the random variable Ext(X) is ε-close to
U[M]. That is, given an n-bit string coming from an unknown random source with
at least k bits of randomness, the extractor is guaranteed to produce m bits that
are close to uniform. However, this is easily seen to be impossible even when m = 1:
the uniform distribution on either Ext−1(0) or Ext−1(1) is an (n − 1)-source on
which the output of the extractor is constant.

Nisan and Zuckerman [NZ] proposed to get around this difficulty by allowing
the extractor a small number of truly random bits as a seed for the extraction.2

This leads to the following definition.

2Another way around the difficulty is to consider more restricted classes of sources or to
allow multiple independent sources. There is a large and beautiful literature on “deterministic”
extractors for these cases, which we do not discuss here.

Unified Theory of Pseudorandomness 11

Definition 10 ([NZ]). Ext : [N] × [D] → [M] is a (k, ε) extractor if for every
k-source X taking values in [N], Ext(X,U[D]) is ε-close to U[M].

The reason extraction is still interesting is that the number d = logD of truly
random bits can be much smaller than the number of almost-uniform bits ex-
tracted. Indeed, d can be even be logarithmic in m = logM , and thus in many
applications, the need for a seed can be eliminated by enumerating all 2d possibil-
ities.

The ranges of the min-entropy threshold k most commonly studied in the ex-
tractor literature are k = αn or k = nα for constants α ∈ (0, 1), where n = logN
is the length of the source. The error parameter ε is often taken to be a small
constant, but vanishing ε is important for some applications (especially in cryp-
tography). One usually aims to have a seed length d = O(log n) or d = polylog(n),
and have the output length m = logM be as close to k as possible, corresponding
to extracting almost all of the randomness from the source. (Ideally, m ≈ k + d,
but m = Ω(k) or m = kΩ(1) often suffices.)

Notice that the syntax of extractors already matches that of the functions
Γ : [N] × [D] → [M] studied in our framework. The extraction property can be
captured, with a small slackness in parameters, as follows.

Proposition 11. Let Γ = Ext : [N]× [D]→ [M] and let K = 2k. Then:

1. If Ext is a (k, ε) extractor, then

∀T ⊆ [M] |LISTΓ(T, µ(T) + ε)| < K, (5)

where µ(T) = |T |/M .

2. Conversely, if Condition 5 holds, then Ext is a (k + log(1/ε), 2ε) extractor.

Proof. 1. Suppose that Condition (5) fails. That is, there is a set T ⊆ [M] such
that |LISTΓ(T, µ(T) + ε)| ≥ K. Let X be a random variable distributed
uniformly over LISTΓ(T, µ(T) + ε). Then X is a k-source, but

Pr[Ext(X,U[D]) ∈ T] = E
x

R←X

[
Pr[Ext(x, U[D]) ∈ T]

]
> µ(T) + ε

= Pr[U[M] ∈ T] + ε,

so Ext(X,U[D]) is ε-far from U[M]. Thus, Ext is not a (k, ε) extractor.

2. Suppose Condition (5) holds. To show that Ext is a (k + log(1/ε), 2ε) ex-
tractor, let X be any (k+ log(1/ε))-source taking values in [N]. We need to
show that Ext(X,U[D]) is 2ε-close to U[M]. That is, we need to show that
for every T ⊆ [M], Pr[Ext(X,U[D]) ∈ T] ≤ µ(T) + 2ε.

12 S. Vadhan

So let T be any subset of [M]. Then

Pr[Ext(X,U[D]) ∈ T]
≤ Pr[X ∈ LIST(T, µ(T) + ε)] + Pr[Ext(X,U[D]) ∈ T |X /∈ LIST(T, µ(T) + ε)]

≤ |LIST(T, µ(T) + ε)| · 2−(k+log(1/ε)) + (µ(T) + ε)
≤ K · 2−(k+log(1/ε)) + µ(T) + ε

= µ(T) + 2ε

The slackness in parameters in the above characterization is typically insignifi-
cant for extractors. Indeed, it is known that extractors must lose at least Θ(log(1/ε))
bits of the source entropy [RT], and the above slackness only affects the leading
constant.

Notice that the condition characterizing extractors here is identical to the one
characterizing averaging samplers in Proposition 5. Thus, the only real difference
between extractors and averaging samplers is one of perspective, and both per-
spectives can be useful. For example, recall that in samplers, we measure the error
probability δ = K/N = 2k/2n, whereas in extractors we measure the min-entropy
threshold k on its own. Thus, the sampler perspective can be more natural when δ
is relatively large compared to 1/N , and the extractor perspective when δ becomes
quite close to 1/N . Indeed, an extractor for min-entropy k = o(n) corresponds to
a sampler with error probability δ = 1/2(1−o(1))n, which means that each of the n
bits of randomness used by the sampler reduces the error probability by almost a
factor of 2!

This connection between extractors and samplers was proven and exploited
by Zuckerman [Zuc2]. The characterization of extractors in Proposition 11 was
implicit in [Zuc2, Tre1], and was explicitly formalized in coding-theoretic terms by
Ta-Shma and Zuckerman [TZ].

7. Hardness Amplifiers

The connections described in following two sections, which emerged from the work
of Trevisan [Tre1], are perhaps the most surprising of all, because they estab-
lish a link between complexity-theoretic objects (which refer to computational
intractability) and the purely information-theoretic and combinatorial objects we
have been discussing so far.

Complexity Measures. In this section, we will be referring to a couple of dif-
ferent measures of computational complexity, which we informally review here. A
boolean circuit C computes a finite function C : {0, 1}` → {0, 1}m using bit oper-
ations (such as AND, OR, and NOT). The size of a circuit C is the number of bit
operations it uses. When we say that a circuit C computes a function C : [n]→ [q],

Unified Theory of Pseudorandomness 13

we mean that it maps the dlog ne-bit binary representation of any element x ∈ [n]
to the corresponding dlog qe-bit binary representation of C(x).

As a measure of computational complexity, boolean circuit size is known to be
very closely related to the running time of algorithms. However, boolean circuits
compute functions on finite domains, so one needs to design a circuit separately
for each input length, whereas an algorithm is typically required to be a single
“uniform” procedure that works for all input lengths. This gap can be overcome
by considering algorithms that are augmented with a “nonuniform advice string”
for each input length:

Fact 12 ([KL]). Let f : {0, 1}∗ → {0, 1}∗ be a function defined on bit-strings of
every length, and s : N→ N (with s(n) ≥ n). Then the following are equivalent:

1. There is a sequence of circuits C1, C2, . . . such that Cn(x) = f(x) for every
x ∈ {0, 1}n, and the size of Cn is Õ(s(n)).

2. There is an algorithm A and a sequence of advice strings α1, α2, . . . ∈ {0, 1}∗
such that A(x, αn) = f(x) for every x ∈ {0, 1}n, and both the running time
of A on inputs of length n and |αn| are Õ(s(n)).

Thus “circuit size” equals “running time of algorithms with advice,” up to poly-
logarithmic factors (hidden by the Õ(·) notation). Notice that, for the equivalence
with circuit size, the running time of A and the length of its advice string are
equated; below we will sometimes consider what happens when we decouple the
two (e.g. having bounded-length advice but unbounded running time).

We will also sometimes refer to computations with “oracles”. Running an
algorithm A with oracle access to a function f (denoted Af) means that as many
times as it wishes during its execution, A can make a query x to the function f
and receive the answer f(x) in one time step. That is, A can use f as a subroutine,
but we do not charge A for the time to evaluate f . But note that if A runs in
time t and f can be evaluated in time s, then Af can be simulated by a non-oracle
algorithm B that runs in time t · s. The same is true if we use circuit size instead
of running time as the complexity measure.

Hardness Amplification. Hardness amplification is the task of increasing the
average-case hardness of a function. We measure the average-case hardness of a
function by the fraction of inputs on which every efficient algorithm (or circuit)
must err.

Definition 13. A function f : [n] → [q] is (s, δ) hard if for every boolean circuit
C of size s, we have

Pr[C(U[n]) 6= f(U[n])] > δ.

Hardness amplification is concerned with transforming a function so as to in-
crease δ, the fraction of inputs on which it is hard. Ideally, we would like to go from
δ = 0, corresponding to worst-case hardness, to δ = 1−1/q−ε, which is the largest
value we can hope for (since every function with a range of [q] can be computed
correctly on a 1/q fraction of inputs by a constant circuit). In addition to the basic

14 S. Vadhan

motivation of relating worst-case and average-case hardness, such hardness ampli-
fications also are useful in constructing pseudorandom generators (see Section 8),
because it is easier to construct pseudorandom generators from average-case hard
functions (specifically, when q = 2 and δ = 1/2− ε) [NW, BFNW].

To make the goal more precise, we are interested in transformations for con-
verting a function f : [n] → {0, 1} that is (s, 0) hard to a function f ′ : [n′] → [q]
that is (s′, 1 − 1/q − ε) hard for a constant q (ideally q = 2) and small ε. (The
restriction of f to have range {0, 1} is without loss of generality when considering
worst-case hardness; otherwise we can use the function that outputs the j’th bit
of f(i) on input (i, j).)

The price that we usually pay for such hardness amplifications is that the
circuit size for which the function is hard decreases (i.e. s′ < s) and the domain
size increases (i.e. n′ > n); we would like these to be losses to be moderate
(e.g. polynomial). Also, the complexity of computing the function correctly often
increases and we again would like this increase to be moderate (e.g. f ′ should be
computable in exponential time if f is). However, this latter property turns out to
correspond to the “explicitness” of the construction, and thus we will not discuss
it further below.

Several transformations achieving the above goal of converting worst-case hard-
ness into average-case hardness are known; see the surveys [Kab, Tre2]. Like most
(but not all!) results in complexity theory, these transformations are typically
“black box” in the following sense. First, a single “universal” transformation algo-
rithm Amp is given that shows how to compute f ′ given oracle access to f , and this
transformation is well-defined for every oracle f , regardless of its complexity (even
though we are ultimately interested only in functions f ′ within some complexity
class, such as exponential time). Second, the property that f ′ is average-case hard
when f is worst-case hard is proven by giving an “reduction” algorithm Red that
efficiently converts algorithms r computing f ′ well on average into algorithms com-
puting f in the worst-case. (Thus if f is hard in the worst case, there can be no
efficient r computing f ′ well on average.) Again, even though we are ultimately
interested in applying the reduction to efficient algorithms r, this property of the
reduction should hold given any oracle r, regardless of its efficiency. Since our
notion of hardness refers to nonuniform circuits, we will allow the reduction Red
to use some nonuniform advice, which may depend on both f and r.

Black-box worst-case-to-average-case hardness amplifiers as described here are
captured by the following definition.

Definition 14. Let Ampf : [D] → [q] be an algorithm that is defined for every
oracle f : [n] → {0, 1}. We say that Amp is a (t, k, ε) black-box worst-case-
to-average-case hardness amplifier if there is an oracle algorithm Red, called the
reduction, running in time t such that for every function r : [D]→ [q] such that

Pr[r(U[D]) = Ampf (U[D])] > 1/q + ε,

there is an advice string z ∈ [K], where K = 2k, such that

∀i ∈ [n] Redr(i, z) = f(i).

Unified Theory of Pseudorandomness 15

The amplified function is f ′ = Ampf ; we have denoted the domain size as D
rather than n′ for convenience below. Note that without loss of generality, k ≤ t,
because an algorithm running in time t cannot read more than t bits of its advice
string.

The following proposition shows that transformations meeting Definition 14
suffice for amplifying hardness.

Proposition 15. If Amp is a (t, t, ε) black-box hardness amplifier and f is (s, 0)
hard, then Ampf is (s/Õ(t), 1− 1/q − ε) hard.

Proof. Suppose for contradiction there is a circuit r : [D]→ [q] of size s′ computing
Ampf on greater than a 1 − 1/q + ε fraction of inputs. Then there is an advice
string z such that Redr(·, z) computes f correctly on all inputs. Hardwiring z and
using the fact that algorithms running in time t can be simulated by circuits of
size Õ(t), we get a circuit of size Õ(t) ·s′ computing f correctly on all inputs. This
is a contradiction for s′ = s/Õ(t).

Typical settings of parameters for hardness amplification are q = 2, ε ranging
from o(1) to 1/nΩ(1), and t = poly(log n, 1/ε). Note that we make no reference to
the length k of the advice string, and it does not appear in the conclusion of Propo-
sition 15. Indeed, for the purposes of hardness amplification against nonuniform
circuits, k may as well be set equal to running time t of the reduction. However,
below it will be clarifying to separate these two parameters.

Now we place black-box hardness amplifiers in our framework. Given Ampf :
[D] → [q] defined for every oracle f : [n] → {0, 1}, we can define Γ : [N] × [D] →
[D]× [q] by

Γ(f, y) = (y,Ampf (y)), (6)

where N = 2n and we view [N] as consisting of all boolean functions on [n]. Just
as with list-decodable codes, the second input y is a prefix of the output of Γ.
Moreover, any function Γ with this property yields a corresponding amplification
algorithm Amp in the natural way. This syntactic similarity between codes and
hardness amplifiers is no coincidence. The next proposition shows that, if we allow
reductions Red of unbounded running time t (but still bounded advice length k),
then black-box hardness amplifiers are equivalent to list-decodable codes.

Proposition 16. Let Ampf : [D] → [q] be an algorithm that is defined for every
oracle f : [n]→ {0, 1}. Let Γ : [N]× [D]→ [D]× [q] be the function corresponding
to Amp via (6), where N = 2n. Then Amp is an (∞, k, ε) black-box hardness
amplifier if and only if

∀r ∈ [q]D |LISTΓ(Tr, 1/q + ε)| ≤ K,

where Tr = {(y, ry) : y ∈ [D]}.

Note that the characterization given here is indeed identical to that of list-
decodable codes given in Proposition 3.

16 S. Vadhan

Proof. First note that, viewing strings r ∈ [q]D as functions r : [D]→ [q], we have
f ∈ LISTΓ(Tr, 1/q + ε) iff

Pr[r(U[D]) = Ampf (U[D])] > 1/q + ε. (7)

So we need to show that Amp is an (∞, k, ε) black-box hardness amplifier if and
only if, for every function r : [D]→ [q], there are at most K functions f satisfying
Inequality (7).

Suppose that Amp is an (∞, k, ε) black-box hardness amplifier, let Red be the
associated reduction, and let r : [D]→ [q] be any function. If a function f satisfies
Inequality (7), then, by Definition 14, f is of the form Redr(·, z) for some z ∈ [K].
Since there are at most K choices for z, there are at most K functions satisfying
Inequality (7).

Conversely, suppose that for every function r : [D]→ [q], there are at most K
functions f satisfying Inequality (7). Let fr,1, . . . , fr,K be these functions in lexi-
cographic order (repeating the last one if necessary to have exactly K functions).
Then we can define the reduction Red by Redr(i, z) = fr,z(i). (Recall that Red
has unbounded running time, so constructing the list fr,1, . . . , fr,K can be done by
brute force.) By construction, for every function f satisfying Inequality (7), there
exists a z ∈ [K] such that Redr(·, z) = f(·). Thus Amp is an (∞, k, ε) black-box
amplifier.

What about black-box amplifiers with reductions of bounded running time, as
are needed for complexity-theoretic applications? (Proposition 15 is vacuous for
t =∞.)

First, note that every (t, k, ε) amplifier is also an (∞, k, ε) amplifiers, so we
conclude that black-box amplifiers with efficient reductions are stronger than list-
decodable codes. However, the efficiency of the reduction does have a natural
coding-theoretic interpretation. Combining Constructions (1) and (6), we can
interpret the role of the reduction Red in the following manner.

Assume for starters that Red does not use any advice, i.e. K = 1. Then Red is
given oracle access to a received word r ∈ [q]D (meaning that it can ask for the j’th
symbol of r in one time step) and is given a message coordinate i ∈ [n], and should
output the i’th symbol of the message f in time t. This is precisely the notion
of local decoding for an error-correcting code; see the survey [Tre2]. Normally, a
decoding algorithm is given the received word r in its entirety and should output
the corresponding message f (or the list of possible messages f) in its entirety,
ideally in polynomial time (e.g. time poly(D, log q) ≥ poly(n)). Here, however,
we are interested in much smaller running times, such as t = poly(log n, 1/ε), so
the decoder does not even have time to read the entire received word or write the
entire message. Instead we give it oracle access to the received word and only ask
to decode a particular message symbol in which we are interested.

From the previous paragraph, we see that black-box worst-case-to-average-case
hardness amplifiers with no advice and bounded running time are equivalent to lo-
cally decodable error-correcting codes. With advice, Definition 14 provides a nat-
ural formulation of locally list-decodable error-correcting codes, where the number

Unified Theory of Pseudorandomness 17

k of advice bits corresponds to the list size K = 2k. (It is sometimes useful to allow
a more general formulation, where the correspondence between the advice strings
z and decodings f , can be determined by a randomized preprocessing phase, which
is given oracle access to r; see [STV].)

Despite their close relationship, there are some differences in the typical param-
eter ranges for list-decodable codes and hardness amplification. In list-decodable
codes, one typically wants the agreement parameter ε to be a constant and the
codeword length to be linear in the message length (i.e. D log q = O(n)). In
hardness amplification, ε is usually taken to be vanishingly small (even as small
as 1/nΩ(1)), and one can usually afford for the codeword length to be polynomial
in the message length (i.e. D log q = poly(n)), because this corresponds to a lin-
ear blow-up in the input length of the amplified function Ampf as compared to
f . Another difference is that in locally list-decodable codes, it is most natural to
for the list size K to be comparable to the running time t of the decoder, so the
decoder has time to enumerate the elements of the list. For hardness amplification
against nonuniform circuits, we may as well allow for the number of advice bits k
to be as large as the running time t, which means that the list size K = 2k can be
exponential in t.

The fact that locally list-decodable codes imply worst-case-to-average-case hard-
ness amplification was shown by Sudan et al. [STV]. The fact that black-box am-
plifications imply list-decodable codes was implicit in [Tre1], and was made explicit
in [TV].

8. Pseudorandom Generators

A pseudorandom generator is a deterministic function that stretches a short seed
of truly random bits into a long string of “pseudorandom” bits that “look random”
to any efficient algorithm. The idea of bits “looking random” is formalized by the
notion of computational indistinguishability, which is a computational analogue of
statistical difference (cf., Definition 9).

Definition 17 ([GM]). Random variables X and Y are (s, ε) indistinguishable if
for every boolean circuit T of size s, we have

Pr[T (X) = 1]− Pr[T (Y) = 1] ≤ ε.

This is equivalent to the more standard definition in which we bound the ab-
solute value of the left-hand side by replacing T with its complement (which does
not affect standard measures of circuit size).

Now we can define a pseudorandom generator as a function stretching d truly
random bits into m > d bits that are computationally indistinguishable from m
truly random bits.

Definition 18 ([BM, Yao]). A function G : [D]→ [M] is an (s, ε) pseudorandom
generator if G(U[D]) is (s, ε) indistinguishable from U[M].

18 S. Vadhan

Pseudorandom generators are powerful tools for cryptography and for deran-
domization (converting randomized algorithms to deterministic algorithms). See
the surveys [CRT, Mil, Kab, Gol3]. As far as the parameters, we would like the seed
length d = logD to be as small as possible relative to the output length m = logM ,
and we typically want generators that fool circuits of size s = poly(m). The error
parameter ε is usually not too important for derandomization (e.g. constant ε)
suffices, but vanishing ε (e.g. ε = 1/poly(m)) is typically achievable and is crucial
for cryptographic applications.

Another important parameter is the complexity of computing the generator
itself. Even though this will not be explicit below, our discussions are most rel-
evant to pseudorandom generators whose running time may be larger than the
distinguishers T they fool, e.g. polynomial in s or even exponential in the seed
length d = logD. The study of such generators was initiated by Nisan and Wigder-
son [NW]. They suffice for derandomization, where we allow a polynomial slow-
down in the algorithm we derandomize and anyhow enumerate over all D = 2d

seeds. They are not suitable, however, for most cryptographic applications, where
the generator is run by the honest parties, and must fool adversaries that have
much greater running time.

The advantage of “noncryptographic” pseudorandom generators, whose run-
ning time is greater than that of the distinguishers, is that they can be constructed
under weaker assumptions. The existence of “cryptographic” generators is equiv-
alent to the existence of one-way functions [HILL], whereas “noncryptographic”
generators can be constructed from any boolean function (computable in time
2O(n)) with high circuit complexity [NW, BFNW].

We formalize the notion of a black-box construction of pseudorandom gener-
ators from functions of high worst-case circuit complexity analogously to Defini-
tion 14.

Definition 19. Let Gf : [D]→ [M] be an algorithm that is defined for every oracle
f : [n] → {0, 1}. We say that G is a (t, k, ε) black-box PRG construction if there
is an oracle algorithm Red, running in time t, such that for every T : [M]→ {0, 1}
such that

Pr[T (Gf (U[D])) = 1]− Pr[T (U[M]) = 1] > ε,

there is an advice string z ∈ [K] such that

∀i ∈ [n] RedT (i, z) = f(i).

Analogously to Proposition 15, black-box constructions according to the above
definition do suffice for constructing pseudorandom generators from functions of
high circuit complexity.

Proposition 20. If Amp is a (t, k, ε) black-box hardness amplifier and f is (s, 0)
hard, then Gf is an (s/Õ(t), ε) pseudorandom generator.

Again, for the purposes of this proposition, k may as well be taken to be equal
to t, and the values of interest range from the “high end” k = t = nΩ(1) (applicable
for functions f whose circuit complexity is exponential in the input length, log n)

Unified Theory of Pseudorandomness 19

to the “low end” k = t = (log n)Ω(1) (applicable for functions f of superpolynomial
circuit complexity).

We place pseudorandom generators in our framework analogously to hardness
amplifiers. Given Gf : [D]→ [M] defined for every oracle f : [n]→ {0, 1}, we can
define Γ : [N]× [D]→ [M] by

Γ(f, y) = Gf (y), (8)

where N = 2n. Again, if we allow the reduction unbounded running time, then
black-box pseudorandom generator constructions can be characterized exactly in
our framework.

Proposition 21. Let Gf : [D] → [M] be an algorithm defined for every oracle
f : [n] → {0, 1}, and let Γ : [N] × [D] → [M] be the function corresponding to G
via Equation (8). Then G is an (∞, k, ε) black-box hardness amplifier if and only
if

∀T ⊆ [M] |LISTΓ(T, µ(T) + ε)| ≤ K,
where K = 2k and µ(T) = |T |/M .

The proof of Proposition 21 is similar to Proposition 16, noting that we can
view a function T : [M] → {0, 1} as the characteristic function of a set T ⊆ [M]
and conversely.

Notice that the condition in Proposition 21 is identical to the ones in our
characterizations of averaging samplers (Proposition 5) and randomness extrac-
tors (Proposition 11). Thus, black-box pseudorandom generator constructions
with reductions of unbounded running time (but bounded advice length k) are
equivalent to both averaging samplers and randomness extractors. Analogously to
the discussion of hardness amplifiers, an efficient reduction corresponds to extrac-
tors and samplers with efficient “local decoding” procedures. Here the decoder is
given oracle access to a statistical test T that is trying to distinguish the output
of the extractor Ext from uniform. It should be able to efficiently compute any
desired bit of any source string x = f for which T succeeds in distinguishing the
output Ext(x, U[D]) from uniform given some k = logK bits of advice depend-
ing on x. Even though achieving this additional local decoding property seems
to only make constructing extractors more difficult, the perspective it provides
has proved useful in constructing extractors, because it suggests an algorithmic
approach to establishing the extractor property (namely, designing an appropriate
reduction/decoder).

In terms of parameters, black-box PRG constructions are closer to extractors
than samplers. In particular, the “high end” of PRG constructions has k = t =
nΩ(1), corresponding to extracting randomness from sources whose min-entropy is
polynomially smaller than the length. However, a difference with extractors is that
in pseudorandom generator constructions, one typically only looks for an output
length m that it is polynomially related to t = k. This corresponds to extractors
that extract m = kΩ(1) bits out of the k bits of min-entropy in the source, but for
extractors, achieving m = Ω(k) or even m ≈ k + d is of interest. The connection
between pseudorandom generators and extractors described here was discovered
and first exploited by Trevisan [Tre1], and has inspired many subsequent works.

20 S. Vadhan

References

[Alo] N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83–96, 1986. Theory
of computing (Singer Island, Fla., 1984).

[AB] S. Arora and B. Barak. Computational complexity. Cambridge University Press,
Cambridge, 2009. A modern approach.

[BFNW] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP Has Subexponential
Time Simulations Unless EXPTIME has Publishable Proofs. Computational
Complexity, 3(4):307–318, 1993.

[BR] M. Bellare and J. Rompel. Randomness-Efficient Oblivious Sampling. In 35th
Annual Symposium on Foundations of Computer Science, pages 276–287, Santa
Fe, New Mexico, 20–22 Nov. 1994. IEEE.

[BM] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences
of Pseudo-Random Bits. SIAM Journal on Computing, 13(4):850–864, Nov.
1984.

[CG1] B. Chor and O. Goldreich. Unbiased Bits from Sources of Weak Randomness
and Probabilistic Communication Complexity. SIAM Journal on Computing,
17(2):230–261, Apr. 1988.

[CG2] B. Chor and O. Goldreich. On the Power of Two-Point Based Sampling. Journal
of Complexity, 5(1):96–106, Mar. 1989.

[CRT] A. E. F. Clementi, J. D. P. Rolim, and L. Trevisan. Recent advances towards
proving P=BPP. Bulletin of the European Association for Theoretical Computer
Science. EATCS, 64:96–103, 1998.

[GT] D. Galvin and P. Tetali. Slow mixing of Glauber dynamics for the hard-core
model on regular bipartite graphs. Random Structures & Algorithms, 28(4):427–
443, 2006.

[Gil] D. Gillman. A Chernoff bound for random walks on expander graphs. SIAM
J. Comput., 27(4):1203–1220 (electronic), 1998.

[Gol1] O. Goldreich. A Sample of Samplers - A Computational Perspective on Sam-
pling (survey). Electronic Colloquium on Computational Complexity (ECCC),
4(20), 1997.

[Gol2] O. Goldreich. Computational complexity: a conceptual perspective. Cambridge
University Press, Cambridge, 2008.

[Gol3] O. Goldreich. Pseudorandom Generators: A Primer.
http://www.wisdom.weizmann.ac.il/ oded/prg-primer.html, July 2008.
Revised version of [Gol2, Ch. 8].

[GM] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer
and System Sciences, 28(2):270–299, Apr. 1984.

[Gur] V. Guruswami. Algorithmic Results in List Decoding, volume 2, number 2 of
Foundations and Trends in Theoretical Computer Science. now publishers, 2006.

[GUV] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced Expanders and Random-
ness Extractors from Parvaresh–Vardy Codes. Journal of the ACM, 56(4):1–34,
2009. Preliminary version recipient of Best Paper Award at CCC ‘07.

Unified Theory of Pseudorandomness 21

[HILL] J. H̊astad, R. Impagliazzo, L. A. Levin, and M. Luby. A pseudorandom genera-
tor from any one-way function. SIAM Journal on Computing, 28(4):1364–1396
(electronic), 1999.

[HLW] S. Hoory, N. Linial, and A. Wigderson. Expander graphs and their applications.
Bulletin of the AMS, 43(4):439–561, 2006.

[Kab] V. Kabanets. Derandomization: a brief overview. Bulletin of the EATCS,
76:88–103, 2002.

[KL] R. M. Karp and R. J. Lipton. Turing machines that take advice.
L’Enseignement Mathématique. Revue Internationale. IIe Série, 28(3-4):191–
209, 1982.

[Mil] P. Miltersen. Handbook of Randomized Computing, chapter Derandomizing
Complexity Classes. Kluwer, 2001.

[NT] N. Nisan and A. Ta-Shma. Extracting Randomness: A Survey and New Con-
structions. Journal of Computer and System Sciences, 58(1):148–173, February
1999.

[NW] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer
and System Sciences, 49(2):149–167, Oct. 1994.

[NZ] N. Nisan and D. Zuckerman. Randomness is Linear in Space. Journal of Com-
puter and System Sciences, 52(1):43–52, Feb. 1996.

[RT] J. Radhakrishnan and A. Ta-Shma. Bounds for dispersers, extractors,
and depth-two superconcentrators. SIAM Journal on Discrete Mathematics,
13(1):2–24 (electronic), 2000.

[SSS] J. P. Schmidt, A. Siegel, and A. Srinivasan. Chernoff-Hoeffding bounds for ap-
plications with limited independence. SIAM Journal on Discrete Mathematics,
8(2):223–250, 1995.

[Sha] R. Shaltiel. Recent Developments in Extractors. In G. Paun, G. Rozenberg, and
A. Salomaa, editors, Current Trends in Theoretical Computer Science, volume
1: Algorithms and Complexity. World Scientific, 2004.

[Sud] M. Sudan. List decoding: Algorithms and applications. SIGACT News,
31(1):16–27, 2000.

[STV] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom Generators without the
XOR Lemma. Journal of Computer and System Sciences, 62:236–266, 2001.

[TUZ] A. Ta-Shma, C. Umans, and D. Zuckerman. Loss-less condensers, unbalanced
expanders, and extractors. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing, pages 143–152 (electronic), New York,
2001. ACM.

[TZ] A. Ta-Shma and D. Zuckerman. Extractor codes. IEEE Transactions on Infor-
mation Theory, 50(12):3015–3025, 2004.

[Tre1] L. Trevisan. Extractors and pseudorandom generators. Journal of the ACM,
48(4):860–879 (electronic), 2001.

[Tre2] L. Trevisan. Some Applications of Coding Theory in Computational Complex-
ity. Quaderni di Matematica, 13:347–424, 2004.

[Tre3] L. Trevisan. Pseudorandomness and combinatorial constructions. In Interna-
tional Congress of Mathematicians. Vol. III, pages 1111–1136. Eur. Math. Soc.,
Zürich, 2006.

22 S. Vadhan

[TV] L. Trevisan and S. Vadhan. Pseudorandomness and Average-Case Complexity
via Uniform Reductions. Computational Complexity, 16(4):331–364, December
2007.

[Vad1] S. Vadhan. The Unified Theory of Pseudorandomness. SIGACT News,
38(3):39–54, September 2007.

[Vad2] S. P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Com-
puter Science. now publishers, 2010. To appear. See http://seas.harvard.

edu/~salil/pseudorandomness.

[Yao] A. C. Yao. Theory and Applications of Trapdoor Functions (Extended Ab-
stract). In 23rd Annual Symposium on Foundations of Computer Science, pages
80–91, Chicago, Illinois, 3–5 Nov. 1982. IEEE.

[Zuc1] D. Zuckerman. Simulating BPP Using a General Weak Random Source. Algo-
rithmica, 16(4/5):367–391, Oct./Nov. 1996.

[Zuc2] D. Zuckerman. Randomness-Optimal Oblivious Sampling. Random Structures
& Algorithms, 11(4):345–367, 1997.

School of Engineering and Applied Sciences
Harvard University
33 Oxford Street
Cambridge, MA 02138
USA
E-mail: salil@seas.harvard.edu

http://seas.harvard.edu/~salil/pseudorandomness
http://seas.harvard.edu/~salil/pseudorandomness

	Introduction
	The Framework
	List-Decodable Codes
	Samplers
	Expander Graphs
	Randomness Extractors
	Hardness Amplifiers
	Pseudorandom Generators

