Universal hash family

Notation: Universe $U = \{0, \ldots, u - 1\}$, index space $M = \{0, \ldots, m - 1\}$, n size of set S.

[Carter and Wegman, 1979]

- A family \mathcal{H} of hash functions is **2-universal** if for any $x_1 \neq x_2$,

\[
\Pr[h(x) = h(y)] \leq \frac{1}{m}.
\]

for a uniform $h \in \mathcal{H}$.

- A family \mathcal{H} of hash functions is **strongly 2-universal** if for any $x_1 \neq x_2$,

\[
\Pr[h(x_1) = y_1, h(x_2) = y_2] = \frac{1}{m^2}.
\]

for a uniform $h \in \mathcal{H}$.

Does it remind you of anything from previous lectures?
Universal Hashing

Reminder from Lectures 4,5:

• We defined the notion of k-wise independent family of hash functions

• When we say k-universal, we usually mean strongly k-universal.

• We discussed how one can construct a 2-wise independent family

$$h(x) = ax + b \mod p.$$

[Carter and Wegman, 1979]
Avoiding Modular Arithmetic

- Modular arithmetic can be slow
- [Dietzfelbinger et al., 1997] proposed the following hash function (collisions twice as likely):
- For each k, l they define a class $\mathcal{H}_{k,l}$ of hash functions from $U = [2^k]$ to $M = [2^l]$

$$\mathcal{H}_{k,l} = \{ h_\alpha | h_\alpha = (ax \mod 2^k) \div 2^{k-l} \}.$$

Claim: If α is a random odd $0 < \alpha < 2^l$, and $x_1 \neq x_2$, then

$$\Pr [h(x) = h(y)] \leq 2^{-l+1}.$$
Perfect Hashing

• So far, we’ve seen that the average case behavior of hashing is significantly superior to the worst case.

• However, we can get excellent worst case performance if the set of keys is static.

• Perfect hashing requires $O(1)$ memory accesses in the worst case.

Theorem: If \mathcal{H} is 2-universal, $|S| = n$, $m \geq \alpha \left(\frac{n}{2}\right)$, then

$$\Pr \left[h \text{ is perfect for } S \right] \geq 1 - \frac{1}{\alpha}.$$
Perfect Hashing

Proof sketch:

• Define $X = \#$ collisions, and let’s compute $\mathbb{E}[X]$

• $X = \sum_{i \neq j} X_{ij}$

• $\Pr[X_{ij} = 1] = \frac{1}{m}$

• By linearity of expectation $\mathbb{E}[X] = \frac{n(\frac{n}{2})}{m} \leq \frac{1}{\alpha}$

• Apply Markov’s inequality

$$1 - \Pr[X = 0] = \Pr[X \geq 1] \leq \mathbb{E}[X] \leq \frac{1}{\alpha}.$$
Perfect Hashing

• **Issue:** $O(n^2)$ space

• **Question:** Can we get away with $O(n)$ space?

• **Yes:** Fredman-Komlós-Szemerédi [Fredman et al., 1984].

• **Idea:** Two level hashing,
 1. Hash using a universal hash function to $n = |S|$ bins.
 2. Rehash perfectly within each bin at second level.
Perfect Hashing

Source: CLRS book
Perfect Hashing

Claim:

\[\mathbb{E} \left[\sum_{j=0}^{n-1} n_j^2 \right] \leq 2n. \]

Proof: We count the number of ordered pairs that collide.

\[
\begin{align*}
\mathbb{E} \left[\sum_{j=0}^{n-1} n_j^2 \right] &= \mathbb{E} \left[\sum_i \sum_j X_{ij} \right] \\
&= n + \sum_i \sum_{j \neq i} \mathbb{E} [X_{ij}] \\
&\leq n + \frac{n(n-1)}{m} < 2n.
\end{align*}
\]
Cuckoo Hashing

- An alternative to perfect hashing, that also allows dynamic updates

- Introduced by [Pagh and Rodler, 2001]

- Further extensions, e.g., Hopscotch hashing
procedure insert(x)
 if T[h₁(x)] = x or T[h₂(x)] = x then return;
 pos ← h₁(x);
 loop n times {
 if T[pos] = NULL then { T[pos] ← x; return; }
 x ← T[pos];
 if pos = h₁(x) then pos ← h₂(x) else pos ← h₁(x);
 rehash(); insert(x)
 }
end

Figure 2. Cuckoo hashing insertion procedure and illustration. The arrows show the alternative position of each item in the dictionary. A new item would be inserted in the position of A by moving A to its alternative position, currently occupied by B, and moving B to its alternative position which is currently vacant. Insertion of a new item in the position of H would not succeed: Since H is part of a cycle (together with W), the new item would get kicked out again.

Source: “Cuckoo Hashing for Undergraduates” by Rasmus Pagh
Separate Chaining

Source: Hackerearth
vector <string> Table[20];
int hashTableSize=20;

void insert(string s)
{
// Compute the index using Hash Function
int index = hashFunc(s);
// Insert the element
Table[index].push_back(s);
}
void search(string s)
{
 int index = hashFunc(s);
 for(int i = 0; i < Table[index].size(); i++)
 {
 if(Table[index][i] == s)
 {
 cout << s << "is found!" << endl;
 return;
 }
 }
 cout << s << "is not found!" << endl;
}
Separate Chaining

Load factor α:

$$\alpha := \frac{n}{m}.$$

Claim: Under the assumption of simple uniform hashing, an unsuccessful search takes $O(1 + \alpha)$ time.

Proof sketch: $\mathbb{E}[n_j] = \alpha$ for all $j \in \{0, \ldots, m - 1\}$.

Why distinguish between unsuccessful and successful searches?
Claim: Under the assumption of simple uniform hashing, a successful search takes $O(1 + \alpha)$ time.

Proof sketch:

\[
\mathbb{E} \left[\frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} X_{ij} \right) \right] = \frac{1}{n} \sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} \frac{1}{m} \right)
\]

\[
= 1 + \frac{n-1}{2m}
\]

\[
= 1 + \frac{\alpha}{2} - \frac{\alpha}{(2n)}
\]

\[
= O(1 + \alpha).
\]
Linear Probing

- Sequential memory accesses are fast
- Values stored directly to hash table

We hash \(x \) to \(h(x) \). If this cell is already occupied, then we check \(h(x) + 1 \), \(h(x) + 1 \) \textbf{and so on} (mod arithmetic).

- [Pagh et al., 2007] proved that if hash function is 5-wise independent, then \(\mathbb{E} [\text{operation}] = O(1) \).
Insertion

// Linear probing
void insert(string s)
{
 int index = hashFunc(s);
 while(Table[index] != "")
 index = (index + 1) % hashTableSize;
 hashTable[index] = s;
}
```cpp
void search(string s) {
    int index = hashFunc(s);
    while (Table[index] != s && Table[index] != "") {
        index = (index + 1) % hashTableSize;
    }
    if (Table[index] == s) {
        cout << s << " is found!" << endl;
    } else {
        cout << s << " is not found!" << endl;
    }
}
```
Quadratic Probing

- **Difference** from linear probing is the choice between successive probes or entry slots

\[
\text{index} = \text{index} \mod \text{hashTableSize}
\]

\[
\text{index} = (\text{index} + 1^2) \mod \text{hashTableSize}
\]

\[
\text{index} = (\text{index} + 2^2) \mod \text{hashTableSize}
\]

\[
\text{index} = (\text{index} + 3^2) \mod \text{hashTableSize}
\]
Insertion

```cpp
void insert(string s)
{
    int index = hashFunc(s);
    int h = 1;
    while(hashTable[index] != "") {
        index = (index + h*h) % hashTableSize;
        h++;
    }
    Table[index] = s;
}
```
 void search(string s) {
 int ind = hashFunc(s);
 int h = 1;
 while(Table[ind] != s && Table[ind] != ""){
 ind = (ind + h*h) % hashTableSize;
 h++;
 }
 if(Table[ind] == s)
 cout << s << " is found!" << endl;
 else
 cout << s << " is not found!" << endl;
}
Double Hashing

• Difference from linear probing is that the interval between probes is computed by using two hash functions.

\[\text{indexH} = \text{hashFunc2}(s); \]
\[\text{index} = (\text{index} + 1 \times \text{indexH}) \mod \text{hashTableSize}; \]
\[\text{index} = (\text{index} + 2 \times \text{indexH}) \mod \text{hashTableSize}; \]
void insert(string s)
{
 int index = hashFunc1(s);
 int indexH = hashFunc2(s);
 while(hashTable[index] != "")
 index = (index+indexH)%hashTableSize;
 hashTable[index] = s;
}
void search(string s) {
 int index = hashFunc1(s);
 int indexH = hashFunc2(s);
 while(Table[index] != s && Table[index] != "")
 index = (index + indexH) % hashTableSize;
 if(Table[index] == s)
 cout << s << " is found!" << endl;
 else
 cout << s << " is not found!" << endl;
}
references

Cuckoo hashing.

In *European Symposium on Algorithms*, pages 121–133. Springer.