L2 Norm Estimation

MIT
Piotr Indyk

Lecture 2
L2 Norm Estimation

- A stream is a sequence of updates \((i,1)\)
 \[x_i = x_i + 1 \]
- Want to estimate \(\|x\|_2\) up to \(1 \pm \varepsilon\)
- Last week, we have seen how to do that for \(\|x\|_0\):
 - Space: \((1/\varepsilon + \log m)^O(1)\)
 - Technique:
 - Linear sketches \(\text{Sum}_S(x) = \sum_{i \in S} x_i\) for “random” sets \(S\)
 - (Somewhat messy) estimator involving median
- Today: three methods for estimating \(\|x\|_2\)
 - Alon-Matias-Szegedy - Really cute and simple
 - Johnson-Lindenstrauss - Need in future lectures
 - Median-based - Generalizes to \(L_p\) norm for \(p<2\)
Why L_2 norm?

- **Database join (on A):**
 - All triples $(\text{Rel1}.A, \text{Rel1}.B, \text{Rel2}.B)$
 - s.t. $\text{Rel1}.A = \text{Rel2}.A$
- **Self-join:** if Rel1=Rel2
- **Size of self-join:**
 $$\sum_{\text{val of A}} \text{Rows(val)}^2$$
- **Updates to the relation**
 increment/decrement Rows(val)
Algorithm I: AMS
Choose $r_1 \ldots r_m$ to be i.i.d. r.v., with
$$\Pr[r_i=1]=\Pr[r_i=-1]=1/2$$

Maintain
$$Z=\sum_i r_i x_i$$
under increments/decrements to x_i

Algorithm A:
$$Y=Z^2$$

“Claim”: Y “approximates” $||x||_2^2$ with “good” probability
Analysis

• The expectation of $Z^2 = (\sum_i r_i x_i)^2$ is equal to
 \[E[Z^2] = E[\sum_{i,j} r_i x_i r_j x_j] = \sum_{i,j} x_i x_j E[r_i r_j] \]

• We have
 – For $i \neq j$, $E[r_i r_j] = E[r_i] E[r_j] = 0$ – term disappears
 – For $i = j$, $E[r_i r_j] = 1$

• Therefore
 \[E[Z^2] = \sum_i x_i^2 = \|x\|^2_2 \]
 (unbiased estimator)
Analysis, ctd.

- The second moment of $Z^2 = (\sum_i r_i x_i)^2$ is equal to the expectation of $Z^4 = (\sum_i r_i x_i) (\sum_i r_i x_i) (\sum_i r_i x_i) (\sum_i r_i x_i)$

- This can be decomposed into a sum of
 - $\sum_i (r_i x_i)^4$ → expectation $= \sum_i x_i^4$
 - $6 \sum_{i<j} (r_i r_j x_i x_j)^2$ → expectation $= 6\sum_{i<j} x_i^2 x_j^2$
 - Terms involving single multiplier $r_i x_i$ (e.g., $r_1 x_1 r_2 x_2 r_3 x_3 r_4 x_4$) → expectation $= 0$

 Total: $\sum_i x_i^4 + 6\sum_{i<j} x_i^2 x_j^2$

- The variance of Z^2 is equal to
 $$E[Z^4] - E^2[Z^2] = \sum_i x_i^4 + 6\sum_{i<j} x_i^2 x_j^2 - (\sum_i x_i^2)^2$$
 $$= \sum_i x_i^4 + 6\sum_{i<j} x_i^2 x_j^2 - \sum_i x_i^4 - 2 \sum_{i<j} x_i^2 x_j^2$$
 $$= 4\sum_{i<j} x_i^2 x_j^2$$
 $$\leq 2 (\sum_i x_i^2)^2$$
Analysis, ctd.

• We have an estimator $Y = Z^2$

 - $E[Y] = \sum_i x_i^2$

 - $\sigma^2 = \text{Var}[Y] \leq 2 \left(\sum_i x_i^2 \right)^2$

• Chebyshev inequalityWiki:
 \[
 \Pr[|E[Y] - Y| \geq c \sigma] \leq \frac{1}{c^2}
 \]

• Algorithm B:

 - Maintain $Z_1 \ldots Z_k$ (and thus $Y_1 \ldots Y_k$), define $Y' = \sum_i Y_i / k$

 - $E[Y'] = k \sum_i x_i^2 / k = \sum_i x_i^2$

 - $\sigma'^2 = \text{Var}[Y'] \leq 2k(\sum_i x_i^2)^2 / k^2 = 2 \left(\sum_i x_i^2 \right)^2 / k$

• Guarantee:
 \[
 \Pr[|Y' - \sum_i x_i^2| \geq c (2/k)^{1/2} \sum_i x_i^2] \leq \frac{1}{c^2}
 \]

• Setting c to a constant and $k = O(1/\varepsilon^2)$ gives $(1 \pm \varepsilon)$-approximation with const. probability
Comments

• Only needed 4-wise indepence of $r_1 \ldots r_m$
 – Can generate such vars from $O(\log m)$ random bits

• What we did:
 – Maintain a “linear sketch” vector $Z = [Z_1 \ldots Z_k] = R x$
 – Estimator for $||x||_2^2 : (Z_1^2 + \ldots + Z_k^2)/k = ||Rx||_2^2 / k$
 – “Dimensionality reduction”: $x \rightarrow Rx$
 … but the tail somewhat “heavy”
 – Reason: only used second moment of the estimator
Algorithm II: Dim. Reduction (JL)
Interlude: Normal Distribution

- Normal distribution N(0,1):
 - Range: \((-\infty, \infty)\)
 - Density: \(f(x) = \frac{e^{-x^2/2}}{(2\pi)^{1/2}}\)
 - Mean=0, Variance=1

- Basic facts:
 - If \(X\) and \(Y\) independent r.v. with normal distribution, then \(X+Y\) has normal distribution
 - \(\text{Var}(cX) = c^2 \text{Var}(X)\)
 - If \(X, Y\) independent, then \(\text{Var}(X+Y) = \text{Var}(X) + \text{Var}(Y)\)
A different linear sketch

• Instead of ± 1, let r_i be i.i.d. random variables from $N(0,1)$
• Consider $Z = \sum_i r_i x_i$
• We still have that $E[Z^2] = \sum_i x_i^2 = \|x\|_2^2$, since:
 – $E[r_i] E[r_j] = 0$
 – $E[r_i^2] = \text{variance of } r_i$, i.e., 1
• As before we maintain $Z = [Z_1 \ldots Z_k]$ and define $Y = \|Z\|_2^2 = \sum_j Z_j^2$ (so that $E[Y] = k\|x\|_2^2$)
• We show that there exists $C > 0$ s.t. for small enough $\varepsilon > 0$

$$\Pr[|Y - k\|x\|_2^2| > \varepsilon k\|x\|_2^2] \leq \exp(-C \varepsilon^2 k)$$
Proof

• See the attached notes,
 by Ben Rossman and Michel Goemans