EVALUATION OF ARTERY VISUALIZATIONS FOR HEART DISEASE DIAGNOSIS

Michelle Borkin,
Krzysztof Gajos, Amanda Peters, Dimitrios Mitsouras,
Simone Melchionna, Frank Rybicki, Charles Feldman,
and Hanspeter Pfister

Harvard School of Engineering & Applied Sciences
Harvard Medical School
Brigham & Women’s Hospital
EVALUATION OF ARTERY VISUALIZATIONS FOR HEART DISEASE DIAGNOSIS
EVALUATION OF ARTERY VISUALIZATIONS FOR HEART DISEASE DIAGNOSIS
NON-INVASIVE DIAGNOSIS

1. Obtain patient CT data
2. Segment arteries
3. Generate patient geometries
4. Patient specific blood flow simulation
5. Visualize and analyze data
6. Clinical decision
DATA

initial disease

ESS = endothelial shear stress
(i.e., frictional force from blood flow)

This can rupture and give you a heart attack!
Low ESS = BAD

Initial disease

Plaque

ESS = endothelial shear stress
(i.e., frictional force from blood flow)

very low ESS

This can rupture and give you a heart attack!

cannot directly measure ESS in living patients!
PREVIOUS WORK

- ESS Vessel Visualization

[Rybicki, et al. 2009] [Chatzizisis, et al. 2007]
PREVIOUS WORK

- 2D vs. 3D Evaluation
 [e.g., Cockburn & McKenzie (2002), Laidlaw, et al. (2005), Troy, et al. (2007), Forsberg et al. (2009)]

• Color Map Evaluation

 [e.g., Ware (1988), Rheingans (1992), Rogowitz & Kalvin (2001), Kindlmann, et al. (2002)]
FORMATIVE QUALITATIVE STUDY

- Semi-structured interviews
- 10 medical doctors and researchers
- Brigham & Women’s Hospital (Boston, MA)
3D
LAYOUT AND PROJECTIONS
COLOR
COLOR

Preferred (standard)

Too “radiological”

Non-rainbow favorite!
Quantitative Study: Goals

3D vs. 2D

Rainbow vs. diverging
QUANTITATIVE STUDY

- 21 Harvard Medical students (12 women and 9 men)
- Mixed within-subject and between-subject design:
 - *within* = dimensionality of representation (2D or 3D)
 - *between* = color mapping (rainbow or diverging)

Example diagrams for participants A and B.
Quantitative Study

• Dependent measures:
 ‣ fraction of low ESS regions identified
 ‣ number of false positives (i.e., non-low ESS regions identified as low ESS)
 ‣ time to complete a diagnosis
QUANTITATIVE STUDY
QUANTITATIVE STUDY
QUANTITATIVE STUDY
QUANTITATIVE STUDY
RESULTS
Strong effect of **dimensionality** on accuracy

39% How many low ESS regions found? 62%
Strong effect of dimensionality on accuracy
...as well as color

39% How many low ESS regions found? 91%
EFFICIENCY

Participants more efficient in 2D.

5.6 sec/region

2.4 sec/region
EFFICIENCY

Participants more **efficient** in **2D**.
Rainbow color map has greater effect on efficiency in **3D**.

10.2 sec/region

2.6 sec/region
COMPLEXITY

Accuracy decreases with increased data complexity in 3D

participants less accurate
COMPLEXITY

Accuracy decreases with increased data complexity in 3D

(not true in 2D!)
<table>
<thead>
<tr>
<th>Subjective Responses</th>
<th>2D</th>
<th>3D</th>
</tr>
</thead>
<tbody>
<tr>
<td>I found it easy to identify low ESS regions.</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>I was able to perform the task efficiently.</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>I am confident I found all the low ESS regions.</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>I am confident all the places I marked are really low ESS.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Domain experts important for design and evaluation

• Even for 3D spatial data, a 2D representation is
 ‣ more accurate for spatial tasks
 ‣ more efficient for spatial tasks

• Rainbow color map
 ‣ is not accurate and not efficient
 ‣ has adverse effects even greater in 3D
CONCLUDING REMARKS

• 3D representation is still essential for surgical planning

• 2D tree diagram applicable to other applications

• Quantitative study convinced our users of good visualization practices
FOR MORE INFORMATION...

On this paper/project: http://bit.ly/hemovis

On my other research: http://bit.ly/mborkin

Special thanks to the Multiscale Hemodynamics Project team, Tamara Munzner, Miriah Meyer, Bernice Rogowitz, Toshiba Medical Systems Corporation, the Cyber-Infrastructure Lab at Harvard (SEAS), the NSF (Grant PHY-0835713), the Department of Defense through the NDSEG Fellowship Program, and the Department of Energy through DOE CSGF Fellowship Program.