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ABSTRACT
Industries and governments are increasingly compelled by
regulations and public pressure to handle sensitive informa-
tion responsibly. Regulatory requirements and user expecta-
tions may be complex and have subtle implications for the
use of data. Information flow properties can express complex
restrictions on data usage by specifying how sensitive data
(and data derived from sensitive data) may flow throughout
computation. Controlling these flows of information accord-
ing to the appropriate specification can prevent both leakage
of confidential information to adversaries and corruption
of critical data by adversaries. There is a rich literature
expressing information flow properties to describe the com-
plex restrictions on data usage required by today’s digital
society. This monograph summarizes how the expressiveness
of information flow properties has evolved over the last four
decades to handle different threat models, computational
models, and conditions that determine whether flows are
allowed. In addition to highlighting the significant advances
of this area, we identify some remaining problems worthy of
further investigation.
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1
Introduction

1.1 Information Flow Properties for Today’s Digital Society

With information comes responsibility: a responsibility to use informa-
tion according to appropriate restrictions. Governments, for instance,
need to obey legal policies on communicating collected information
about private citizens between different departments. The Department
of Health might be permitted to share patient data with the Department
of Immigration only if a specific warrant has been issued. In recent years,
the complexity of policies on information usage has also increased for
corporations. Forced by regulations (e.g., GDPR1) and public sentiment,
technology companies are increasing the transparency of how personal
data is used, allowing users to make more fine-grained decisions on how
and where their information should flow.

Current systems often do not obey agreed upon information security
policies, or simply security policies, that specify allowed usage of infor-
mation. To ensure that a system satisfies the desired security policy,
one first needs to interpret the security policy, which is expressed in a

1Regulation (EU) 2016/679 of the European Parliament on the protection of
natural persons with regard to the processing of personal data and on the free
movement of such data (General Data Protection Regulation).
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1.2. Relation to Privacy, Access Control, and Cryptography 3

high-level policy language, in terms of the system behavior. The result
of this interpretation is a specific property of the system behavior. If
the system satisfies this property, then it is expected that the system
satisfies the initial policy, too.

Complex security policies on data usage can be interpreted as infor-
mation flow properties. An information flow property is a mathematical
specification of how information is allowed to flow between entities
making up a system, such as programs, users, inputs, outputs, and
storage locations. Consider, for instance, a social-network application
where the advertisements shown to users might depend on the social
interaction (e.g., joining a group, liking or sharing posts, pages, ads) of
their “friends”. User Alice might want to specify the security policy that
her coworkers (a subset of her friends) should not learn the groups she
is a member of. Specifically, the choice of ads shown to her coworkers
should not depend on which groups she is a member of. For example,
when Alice joins the group “Broccoli Fans,” her boss should not start
seeing ads about broccoli; otherwise, her boss might infer that there
is a broccoli aficionado on staff. So, Alice’s initial high-level policy
can be interpreted as a specific information flow property: changes in
Alice’s group membership should not cause changes of ads shown to her
coworkers. We refer later to this example property as the Alice-property.

This monograph attempts to match the demand of the digital
society for expressing complex data-usage restrictions with the supply
of information flow properties proposed in the literature. In doing so, we
survey the wide variety of information flow properties that have been
formulated within the last four decades, we compare their expressive
power, and suggest research directions for a faster convergence between
future technological demand and literature supply. Such a large-scale
systematization of information flow properties has not been performed
before.

1.2 Relation to Privacy, Access Control, and Cryptography

Privacy policies are primarily concerned with restricting the inference
of information about individuals. Some privacy policies can be inter-
preted as information flow properties, which are concerned more broadly
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4 Introduction

with restrictions on how data may be handled. For example, use-based
privacy policies (Mundie, 2014), which have the potential to formal-
ize complex regulations (e.g., GDPR, HIPAA2), can be interpreted
as information flow properties (Birrell and Schneider, 2017). Differ-
ential privacy (Dwork, 2006), which limits the influence of individual
data-samples to the output of an aggregate function, and contextual
integrity (Nissenbaum, 2010), which restricts information usage based on
the context, could be regarded as special cases of use-based privacy (Bir-
rell and Schneider, 2017), and thus be interpreted as information flow
properties, too.

Computer systems often employ access control and cryptography to
restrict access to sensitive data. However this might not be sufficient
to enforce information flow properties. Considering our social-network
example, one might attempt to enforce the Alice-property by preventing
Alice’s coworkers from reading her group memberships. Such prevention
can be accomplished by denying read accesses issued by Alice’s coworkers
(i.e., an access control mechanism), or by encrypting these values with
a key unknown to Alice’s coworkers (i.e., a cryptographic mechanism).
However, preventing Alice’s coworkers from reading her group mem-
berships is not enough to enforce the Alice-property. Alice’s coworkers
should be additionally prevented from reading any value derived from
her group memberships, otherwise they may learn something about
these memberships. Neither access control nor cryptography can directly
restrict access to all these derived values. In fact, one cannot even start
addressing this enforcement problem if the information flow property
is not made explicit. For this reason, this monograph emphasizes the
formal specification of information flow properties, which can concretize
the elusive notions of “allowed flow” and “forbidden flow” in terms of
system behavior, and clarify when enforcement mechanisms—such as
access control or cryptographic mechanisms—can successfully achieve
these flow restrictions.

2Health Insurance Portability and Accountability Act.
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1.3 Information Flow Properties are Hyperproperties

A property of system behavior is commonly a trace property: a predicate
on a single system execution. A system is said to satisfy a trace property
if every possible execution of the system satisfies that trace property.
So, in principle, it suffices to examine system executions one-by-one
to deduce if there is a “bad” execution that violates the property. For
example, an access control policy, which stipulates allowed accesses on
entities, is interpreted as a trace property, because one “bad” execution
where a forbidden access is performed is enough to show that the system
does not satisfy this property (an thus the access control policy).

An information flow property is not a trace property, because a
single execution is not enough to exhibit a violation. Considering our
social-network example, a system execution τ where Alice joins “Broc-
coli Fans” and her coworkers see broccoli ads does not constitute by
itself evidence that Alice-property is violated. If for all other possi-
ble executions, Alice’s coworkers see those broccoli ads, independently
of Alice’s group membership, then Alice-property is actually satisfied.
But if, in a hypothetical execution τ ′, Alice does not join “Broccoli
Fans” and her coworkers do not see broccoli ads, then Alice-property
is indeed violated. The set {τ, τ ′} of executions constitutes evidence
that coworkers’ ads depend on Alice’s group memberships: information
flowed from Alice’s group memberships to coworkers’ ads. Consequently,
sets of executions (e.g., {τ, τ ′})—not a single execution—can constitute
evidence for violating information flow properties. For this reason, an
information flow property is a hyperproperty (Clarkson and Schneider,
2010a): a predicate on sets of executions.

1.4 Labels and Security Conditions

An information flow property can be expressed based on labels, which are
associated with entities and indicate the intended uses of these entities.
For example, an entity could be associated with label Secret, to signify
that this entity stores secret information, and another entity could
be associated with Public, to signify that it stores public information.
Labels are commonly accompanied by a flow relation, which signifies how
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6 Introduction

information is permitted to flow between entities associated with these
labels. For instance, a flow relation ⊑ on labels, with Public ⊑ Public,
Public ⊑ Secret, and Secret ⊑ Secret, represents that information is
allowed to flow from Public entities to Public entities, from Public
entities to Secret entities, and from Secret entities to Secret entities.
However information is not allowed to flow from Secret entities to Public
entities. Such a flow relation on labels can be considered as a security
policy that intuitively describes how flows of information should be
restricted. However, this policy is still not precise enough to be rigorously
enforced on a system. What is missing is an interpretation of these flow
restrictions in terms of the system behavior, in the form of a predicate
regarding system executions—an information flow property.

Considering, for instance, a system where inputs and outputs are
labeled with Secret and Public, the information flow restrictions imposed
by the above flow relation can be precisely expressed by the following
information flow property: Whenever two executions of the system agree
on the Public inputs (and possibly differ on Secret inputs), they should
also agree on the Public outputs. As desired, this information flow
property—a specific predicate on system executions—forbids Secret
inputs from flowing to Public outputs, while it allows all other flows
(from Public inputs to Public outputs, from Public inputs to Secret
outputs, and from Secret outputs to Secret outputs).

This information flow property is an instantiation of noninterfer-
ence (Goguen and Meseguer, 1982). Noninterference stipulates that
information should not flow between entities that are associated with
unrelated labels. Noninterference is a security condition, since it can be
parameterized with different systems, labels, and flow relations. When
noninterference is instantiated with a particular system, set of labels,
and flow relation, then the result is an information flow property for
that system, called an instantiation of noninterference. For brevity, one
might simply say that a system satisfies noninterference, instead of an
instantiation of noninterference.
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1.5 Enforcing Information Flow Properties

Information flow control (IFC) mechanisms are used to ensure that a
system satisfies an information flow property, which is usually based on
a set of labels and a flow relation. Assuming entities are associated with
specific labels, a conventional IFC mechanism enforces such a property
by propagating labels from one entity to another, along the flow of
information. If this label propagation meets an inconsistency (e.g.,
Secret is about to be propagated to an entity associated with Public),
then the mechanism reports an error. In the general case, enforcing
information flow properties is an undecidable problem (Sabelfeld and
Myers, 2003b), and thus, an IFC mechanism might conservatively report
an error for a system that actually satisfies the desired property.

A wide variety of IFC mechanisms has been presented in the litera-
ture. IFC has been extensively studied in the context of programming
languages, because restrictions on information usage are ultimately
mapped to restrictions on how information flows throughout program
executions. In particular, IFC has been applied to functional (e.g.,
Heintze and Riecke, 1998) and imperative (e.g., Volpano et al., 1996)
programming languages, including assembly languages (e.g, Costanzo
et al., 2016). IFC has also been used in object-oriented (e.g., Myers
and Liskov, 1997), declarative (e.g., Schultz and Liskov, 2013), and
concurrent (e.g., Smith and Volpano, 1998) programming languages.
For strongly typed programming languages, IFC is usually implemented
as part of the compiler, and thus it is statically invoked. For weakly
typed programming languages, such as JavaScript, IFC is dynamic (e.g.,
Austin and Flanagan, 2009) or hybrid (e.g., Moore and Chong, 2011).
Model checking methods for IFC have been developed, too (e.g., Clark-
son et al., 2014). Sabelfeld and Myers (2003b) discuss information flow
properties and enforcement mechanisms in the context of programming
languages.

Because programming languages can model a variety of systems,
intuition for enforcing information flow policies have been transferred
from programs to computer systems more broadly. Hence, IFC has
been studied at the hardware level (e.g., Amorim et al., 2014), within
operating systems (e.g., Zeldovich et al., 2006) and web browsers (e.g.,
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8 Introduction

Chong et al., 2007). Also, techniques from IFC are used in the context
of distributed systems (e.g., Zeldovich et al., 2008; Liu et al., 2009),
blockchains (e.g., Cecchetti et al., 2021), and cyber-physical systems
(e.g., Akella et al., 2010).

This monograph does not focus on IFC mechanisms; instead we
mainly discuss information flow properties. Focusing mainly on infor-
mation flow properties is sensible, because an information flow property
is usually expressed independently of the enforcement mechanism. This
means that the same information flow property can be enforced in
several different ways. The rich literature on IFC mechanisms warrants
its own survey.

1.6 Scope of the Monograph and Terminology

In general, the formulation of an information flow property for a system
involves the selection of the following:

– The entities under consideration, and

– The conditions under which flows between these entities are al-
lowed or forbidden.

The entities are chosen based on the computational model and threat
model for that system: The computational model indicates the enti-
ties that are manipulated during system executions; the threat model
indicates the entities with which the adversaries interact. So, specify-
ing allowed or forbidden flows between entities amounts to stipulating
allowed or forbidden flows between the system and the adversaries.
We explore the space of information flow properties by varying the
computational model, the threat model, and the expressiveness of the
conditions employed to specify restrictions on information flows between
entities.

We summarize here the terminology that this monograph employs
to systematically discuss the covered literature:

– A security policy is a high-level description of desirable system
behavior. It is usually specified using a policy language.
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1.6. Scope of the Monograph and Terminology 9

– A label is a syntactic object that is associated with an entity in a
system and denotes intended uses of that entity.

– A flow relation between labels represents allowed flows between
entities associated with these labels. Flow relations usually con-
stitute the language for specifying information flow policies, a
subset of security policies.

– A security condition is a statement parameterized with the labels,
the flow relation, and the behavior of the system to specify allowed
or forbidden flows between system entities associated with certain
labels.

– An information flow property is a hyperproperty of the system. It
can be the result of instantiating a security condition with certain
labels, flow relation, and system.

– An information flow control mechanism is an enforcement mecha-
nism that ensures the behavior of a system satisfies an information
flow property.

Although we aspire for the above terminology to become lingua
franca for the community, researchers have used these terms differently
in the past. Some authors (e.g., Denning, 1976) use security level or
security class, instead of label, to refer to syntactic objects that denote
intended use for the associated entities. Other authors use term policy
for the decision to associate certain labels with entities in the system
(e.g., Li and Zdancewic, 2005a), or the flow relation between labels (e.g.,
Sabelfeld and Sands, 2005), or even the way that the flow relation is
allowed to change during execution (e.g., Broberg et al., 2015).

For the information flow properties discussed in this monograph, we
do not always present exactly their original definition, but rather adapt
them to a common formalism. We strive to capture the key ideas and
differences, but some subtleties of the definitions may differ due to the
change in formalism.
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2
Noninterference

To specify allowed (or forbidden) flows of information between entities of
a system, we must first understand what information flow is. According
to Cohen (Cohen, 1976; Cohen, 1977), information flows1 from entity
α to entity β when β depends on or is influenced by α. For example,
the salary of an employee flows to the amount of income tax that the
employee pays. This is because the income tax depends on the salary:
by varying the salary, the income tax varies, too. Inspired by Ashby
(1956) and Shannon (1948), Cohen attempts to formalize this intuition.
He postulates that information flows from one entity to another if the
variety of the former is conveyed to the latter. More formally, Cohen
proposes strong dependency as a definition for information flow:
Definition 2.1 (Strong Dependency). Consider a (deterministic) system
H whose inputs include entity α and whose outputs include entity β.
Output β strongly depends on input α if there exist two executions of
H where the inputs differ only for entity α and the output β differs.
In other words, information flows from input α to output β, if varying
only input α, while keeping the rest of the inputs fixed, causes output
β to change.

1Cohen uses the term information transmission instead of information flow.
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11

Cohen proposes information flow properties2 that forbid certain flows
(i.e., strong dependencies) between entities. Such a property stipulates
that variety should not be conveyed between certain entities: changing
the value of α should not cause β to change.

Goguen and Meseguer (1982) subsequently used the term noninter-
ference to name the requirement that variety should not be conveyed
between certain entities. Noninterference is now a widespread security
condition that has been employed to express restrictions on information
flow for a wide range of computational and threat models.

Here, we introduce the formalism needed to illustrate noninterference
for programs. Noninterference imposes restrictions on the behavior of
programs, specifying allowed and forbidden flows of information. The
behavior of a program C is usually modeled by a set TC of execution
traces, which are sequences of states. Finite execution traces in TC—
denoted T fin

C — represent terminating executions, while infinite execution
traces represent diverging executions. A state usually includes a memory
M that maps variables that appear in program C, denoted as var(C),
to values. This memory is updated during execution. Thus, an execution
trace τ ∈ TC is an abstraction of an actual execution of program C.
The computational model dictates what information from the actual
program execution is represented in the corresponding execution trace.
For the batch computational model (O’Neill et al., 2006), an execution
trace τ contains only the initial memory τ.M0 and the final memory
τ.M↓ of the modeled execution. If inputs are modeled by variables in the
initial memory of the program execution and outputs are modeled by
variables in the final memory of the program execution, then the batch
computational model essentially focuses only on the inputs and outputs
of each program execution—no information about the intermediate
computation is captured.

To formulate restrictions on how information flows during program
executions, one also needs to define a threat model. Take, for example,
a simple threat model where principals provide inputs and observe
outputs. Suppose that principals are partitioned into two sets labeled
Alice and Coworkers: set Alice contains only Alice and set Coworkers

2Cohen uses the term security problem instead of information flow property.
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12 Noninterference

contains Alice’s coworkers. A mapping Γ then associates the label Alice
both with inputs provided by Alice and outputs observed by Alice, and
similarly for label Coworkers.

Considering the above concrete computational and threat models, we
can now precisely express the following restriction: inputs provided by
Alice are not allowed to flow to outputs observable by Alice’s coworkers.
To do so, we employ a security condition known as relational noninter-
ference (Clarkson and Schneider, 2010a): for any two finite execution
traces τ1, τ2 ∈ T fin

C of program C whose initial memories τ1.M0 and
τ2.M0 agree on values in variables associated with label ℓ (and possibly
disagree on values in variables associated with label ℓ′), their final mem-
ories τ1.M↓ and τ2.M↓ should agree on values in variables associated
with ℓ.

Definition 2.2 (Relational Noninterference - RNI(C,ℓ,ℓ′,Γ)). Given a de-
terministic program C and a mapping Γ from variables in var(C) to
labels in {ℓ, ℓ′}, we say that program C satisfies relational noninterfer-
ence from ℓ′ to ℓ if the following holds:

∀τ1, τ2 ∈ T fin
C : τ1.M0 =ℓ τ2.M0 =⇒ τ1.M↓ =ℓ τ2.M↓

where

M =ℓ M ′ ≜ ∀x∈var(C) : Γ(x) = ℓ =⇒ M(x) = M ′(x)

The result of instantiating RNI with a particular program C, labels
Coworkers, Alice, and mapping Γ, is an information flow property
RNI(C, Coworkers, Alice, Γ), which stipulates that changing the inputs
associated with Alice, while keeping inputs associated with Coworkers
the same, should not cause the outputs associated with Coworkers to
change. Equivalently, executing program C on inputs that are indistin-
guishable for Alice’s coworkers should emit outputs that are indistin-
guishable for Alice’s coworkers, too. So, as desired, RNI(C, Coworkers,
Alice, Γ) implies that inputs provides by Alice should not flow to outputs
observed by Alice’s coworkers.
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The behavior of a program C can now be checked against RNI(C,
Coworkers, Alice, Γ) to understand whether C satisfies that information
flow property. Consider, for example, the following program C:

if Joined_Broccoli_Group(h) then
Show_Broccoli_Ads(w)

else
Show_Carrots_Ads(w)

where variable h is the history of Alice’s interaction with the social
network and w is the news feed observed by Alice’s coworker. So, h is
associated with label Alice (i.e., Γ(h) = Alice) and w is associated with
label Coworkers (i.e., Γ(w) = Coworkers). Notice that when C executes,
the ads that Alice’s coworkers observe depend on whether Alice has
joined a broccoli group. In an execution where Alice has not joined
the broccoli group, and thus Joined_Broccoli_Group(h) returns false,
Alice’s coworkers are shown carrots ads; in an execution where Alice has
joined the broccoli group, and thus Joined_Broccoli_Group(h) returns
true, Alice’s coworkers are shown broccoli ads. So, these two possible
executions constitute evidence that program C violates information flow
property RNI(C, Coworkers, Alice, Γ).

There might be cases where information should not flow neither
from label ℓ to label ℓ′, nor from ℓ′ to ℓ. So, both RNI(C, ℓ, ℓ′, Γ) and
RNI(C, ℓ′, ℓ, Γ) should hold. McLean (1994) calls this bidirectional flow
restriction separability.

Notice that RNI(C, ℓ, ℓ′, Γ) is not a trace property because examin-
ing each execution trace in isolation is not enough to deduce whether
RNI(C, ℓ, ℓ′, Γ) is satisfied or not. Instead, RNI(C, ℓ, ℓ′, Γ) is a hyper-
property, since RNI(C, ℓ, ℓ′, Γ) is a predicate on the set T fin

C of finite
execution traces: any two executions traces τ1 and τ2 in T fin

C that satisfy
τ1.M0 =ℓ τ2.M0, should satisfy τ1.M↓ =ℓ τ2.M↓.

In fact, RNI(C, ℓ, ℓ′, Γ) belongs to a special subset of hyperproperties
known as safety hyperproperties (Clarkson and Schneider, 2010a). A
safety hyperproperty Φ is closed under refinement, which means that it
is closed under the subset relation on traces: if set T of traces satisfies
Φ and T ′ ⊆ T holds, then subset T ′ satisfies Φ, too. Consequently, if a
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14 Noninterference

system satisfies Φ, and the behavior of that system is restricted to fewer
possible executions, then the resulting system will also satisfy Φ. Being
a safety hyperproperty, RNI(C, ℓ, ℓ′, Γ) is closed under refinement.
However not all information flow properties are closed under refinement,
and thus, not all information flow properties are safety hyperproperties.
Section 5 includes examples of such properties.

Most information flow properties are hyperproperties, not trace
properties. Intuitively, this is because information flow properties can
often be expressed as counterfactual propositions, which compare (at
least) two possible executions. The connection between information flow
and counterfactual reasoning is not surprising, because information flow
is related to causality and causality is often established by counterfactual
propositions (Lewis, 1973): “an event E causally depends on C if, and
only if, (i) if C had occurred, then E would have occurred, and (ii)
if C had not occurred, then E would not have occurred”. Notice that
Cohen’s strong dependency is indeed a counterfactual proposition: if
the value of α were different, then the value of β would have been
different, too. An instantiation of noninterference (e.g., RNI)—being
the absence of strong dependency—is thus a counterfactual proposition,
and consequently, a hyperproperty.

The following sections cover instantiations of noninterference that
accommodate richer labels (Section 3), different threat models (Section
4), different computational models (Section 5), and finer-grained notions
of allowed flow (Section 6).

The version of record is available at: http://dx.doi.org/10.1561/3300000008



3
Labels

Labels are syntactic objects associated with entities of a system. An
information flow policy can describe allowed (or forbidden) flows between
entities based on the labels that these entities are associated with. Thus
entities associated with the same label are subject to the same flow
restrictions. As Montagu et al. (2013) put it:

These labels can be thought of as low-level “micro-policies”
for information flow. They do not directly describe the
end-to-end security policies that the system’s users might
care about (“my banking information will never be sent to
evil.com”); rather, they capture information flow invariants
on specific sensitive values (“this integer and values derived
from it should only be visible to the Bank principal”).

For this section, labels are assumed to be taken from a given set Λ; no
additional assumptions are made about the syntax used to construct
labels in Λ. Section 6 will discuss different syntaxes for constructing
richer labels that can support more expressive information flow policies.

15
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16 Labels

3.1 Representing Restrictions

Labels represent restrictions on how associated entities can be used. For
confidentiality, labels might represent restrictions on who can read some
data. For instance, labels Secret and Public capture such restrictions:
Public entities (i.e., entities associated with Public) store low confiden-
tiality data, and thus, they are allowed to be read by all principals,
while Secret entities store high confidentiality data, and thus, they are
allowed to be read only by a specific subset of principals. Using these
labels, an information flow policy can specify that information from
Secret inputs is not allowed to flow to Public outputs.

Other security restrictions can be represented by labels, too. For
instance, labels Untrusted and Trusted can capture integrity restrictions.
If an entity is associated with label Trusted, then all principals trust
that entity; otherwise, no principal trusts that entity. Based on these
labels, an information flow policy can specify that information from
Untrusted inputs, which store low integrity data, is not allowed to flow
to Trusted outputs, which store high integrity data.

Traditionally, flow restrictions for integrity have been considered
the dual to those for confidentiality (Biba, 1977). This is because, for
confidentiality, information is not allowed to flow from high to low
confidentiality data, whereas for integrity, information is not allowed to
flow from low to high integrity data.

Labels can also represent availability requirements. For example,
Li et al. (2003) consider high availability and low availability data,
where high availability data is accompanied by a stronger availability
guarantee than low availability data. For instance, high availability data
might be stored in multiple replicas and thus, it is highly likely that
this data will be available upon request. Whereas, low availability data
might be stored in only one server, where one critical server fault might
render that data inaccessible. Critical and time-sensitive services had
better depend only on high availability data—not on low availability
data. This implies that the computation of high availability data should
not depend on low availability data, which is an information flow policy
studied by Li et al. (2003).
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Zheng and Myers (2005) later combine integrity and availability
requirements into one policy: “with all high availability inputs available,
equivalent high integrity inputs will eventually result in equally available
high availability outputs”. Zheng and Myers (2014) then extend this
framework to handle distributed settings, expressing confidentiality,
integrity, and availability guarantees for quorum replication schemes.

3.2 Axioms for Flow Relations

As discussed in the Introduction, an information flow policy can be
represented as a flow relation ⊑ on a set Λ of labels, such that if ℓ ⊑ ℓ′

holds for labels ℓ and ℓ′ in Λ, then information is allowed to flow from ℓ

(i.e., entities associated with ℓ) to ℓ′. Notation ⟨Λ,⊑⟩ has been employed
to denote the combination of a set Λ of labels and a flow relation ⊑ on
these labels.

A flow relation usually satisfies certain axioms. If information is
always allowed to flow between entities that are associated with the
same label, then flow relation ⊑ is reflexive:

∀ℓ ∈ Λ: ℓ ⊑ ℓ.

If, in addition, the flow relation is transitive:

∀ℓ1, ℓ2, ℓ3 ∈ Λ: ℓ1 ⊑ ℓ2 ∧ ℓ2 ⊑ ℓ3 =⇒ ℓ1 ⊑ ℓ3

then the flow relation is a preorder ⟨Λ,⊑⟩.
One might also want economy of labels: if information is allowed to

flow from label ℓ1 to label ℓ2 and from ℓ2 to ℓ1, then it might be sensible
to treat ℓ1 and ℓ2 as equivalent labels. This is the antisymmetry axiom:

∀ℓ1, ℓ2∈Λ: ℓ1 ⊑ ℓ2 ∧ ℓ2 ⊑ ℓ1 =⇒ ℓ1 = ℓ2.

When adding the antisymmetry axiom to a preorder, the resulting flow
relation becomes a partial order.

Notice that if a flow relation is a partial order, then it does not
contain cycles. This means that for any labels ℓ and ℓ′ such that ℓ ⊑
ℓ′ and ℓ ̸= ℓ′, then it cannot be the case that ℓ′ ⊑ ℓ holds, too. So it
is sensible to say that ℓ′ is higher than ℓ. The higher a label is in a
flow relation, the more flow restrictions are imposed on the associated
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entities. That is because the set of labels that ℓ′ can flow to is a subset
of the labels that ℓ can flow to, when ℓ ⊑ ℓ′ holds. In general, we say
that ℓ′ is at least as restrictive as ℓ. For confidentiality, entities labeled ℓ

are less confidential than entities labeled ℓ′; for integrity, entities labeled
ℓ are higher integrity (i.e., more trusted) than entities labeled ℓ′.

In order to enforce an information flow policy, an information flow
control mechanism might require the corresponding flow relation to
satisfy additional requirements. For example, when combining infor-
mation from two variables to compute a new value, the enforcement
mechanism might need to deduce the label to associate with the new
value, from the labels ℓ1 and ℓ2 associated with these two variables.
Any upper bound of ℓ1 and ℓ2 would suffice, as it would obeys flow
restrictions both from ℓ1 and ℓ2. But a lower upper bound is better, as
it will permit as many flows as possible. Moreover, for predictability,
we may desire a unique least upper bound. The least upper bound, or
join of ℓ1 and ℓ2, is denoted ℓ1 ⊔ ℓ2. Specifically, join ℓ1 ⊔ ℓ2 satisfies the
following conditions:

– ℓ1 ⊔ ℓ2 is at least as restrictive as both ℓ1 and ℓ2:

ℓ1 ⊑ ℓ1 ⊔ ℓ2 and ℓ2 ⊑ ℓ1 ⊔ ℓ2.

– There is no other label that satisfies the above condition and is
less restrictive than ℓ1 ⊔ ℓ2:

∀ℓ∈Λ: ℓ1 ⊑ ℓ ∧ ℓ2 ⊑ ℓ =⇒ ℓ1 ⊔ ℓ2 ⊑ ℓ.

A partial order ⟨Λ,⊑⟩ that has a join label ℓ1 ⊔ ℓ2 (i.e., least upper
bound) for any two labels ℓ1, ℓ2 ∈ Λ is a join semilattice.

An information flow control mechanism might also require the exis-
tence of a least restrictive label ⊥, sometimes called the bottom element:

∀ℓ∈Λ: ⊥ ⊑ ℓ.

Constants in a program are often associated with ⊥. For confidentiality,
this is because the program itself is typically regarded as public infor-
mation; for integrity, this is because the program is typically trusted.
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A finite join semilattice with a bottom element forms a lattice of la-
bels (Denning, 1976).1

Flow relations that satisfy transitivity might not be always desirable.
For example, raw data may flow to a data curator component and
the curated data may then flow to some data analysis procedure, but
raw data may not directly flow to the data analysis procedure without
being curated first. This is a non-transitive flow relation between raw
data, data curator, and data analysis. Foley (1989) proposes reflexive
flow policies, which are flow relations that satisfy reflexivity but not
necessarily transitivity. The author also shows how to construct a
lattice from a reflexive relation, such that the original flow relation is
preserved. Sections 6 and 7 discuss how non-transitive flow relations
can be interpreted as information flow properties.

Reflexivity exceptions on flow relations have been studied by Bryce
(1997), who points out that “one should distinguish between flows from
an entity to itself, and flows among entities of the same class”, meaning
entities associated with the same label. So, there might be cases where
information may flow from an entity x to itself, but it may not flow to
other entities that are associated with the same label as x. Bryce shows
how finer-grained labels can restore reflexivity and at the same time
preserve the restrictions of the original non-reflexive flow relation.

Foley (1991) studies flow relations with aggregation and separation
exceptions. For a flow relation that forms a lattice, if information may
flow from ℓ to ℓ′′ and from ℓ′ to ℓ′′, then information may flow from the
join ℓ ⊔ ℓ′ to ℓ′′ (by the definition of join operator ⊔). A flow relation
with aggregation exceptions could specify that information from the
aggregate ℓ ⊔ ℓ′ is not allowed to flow to ℓ′′. For example, such a flow
relation could stipulate that information may flow either from client A or
from client B to a particular employee, but information should not flow
from both clients to the employee; this is an instance of a Chinese Wall
policy. A separation exception is the dual of an aggregation exception:
ℓ ⊔ ℓ′ is allowed to flow to ℓ′′, but neither ℓ nor ℓ′ may independently

1A lattice has both join and meet operations, where the meet operation provides
greatest lower bounds. Some information flow control mechanisms can use the meet
operation to find appropriate labels, although the use of the join operation is most
common.
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flow to ℓ′′. One might argue that an encrypted message satisfies this
policy: the encrypted message may flow to the public, but neither the
original message nor the encryption key are revealed to the public.

Figure 3.1 summarizes axioms discussed in this section that one can
select to define a flow relation between labels.

Bryce (1997) Reflexivity←−−−−−−
exceptions

Reflexivity

+
Foley (1989) Transitivity←−−−−−−−

exceptions
Transitivity = Preorder

+
Antisymmetry = Partial Order

+

Foley (1991)
Aggregation
Separation←−−−−−−−
exceptions

Join = Join semilattice

+
⊥ and finite set = Lattice

(Denning, 1976)

Figure 3.1: Axioms, exceptions, and representative citations for flow relations.

3.3 From Labels to Noninterference

This section describes how a flow relation can be interpreted as an
information flow property. In particular, we consider a flow relation
that is a partial order and give an instantiation of noninterference
that accurately captures the imposed restrictions on information flow.
As seen earlier, a flow relation ⊑ defines allowed and forbidden flows
between labels of a set Λ. Considering a label ℓ ∈ Λ, information is
allowed to flow from another label ℓ′ ∈ Λ to ℓ only when ℓ′ ⊑ ℓ holds.
We call ℓ-low those entities that are associated with such a label ℓ′.
So, ℓ-low entities may flow to entities associated with ℓ. We call ℓ-high
those entities that may not flow to ℓ, because they are associated with
a label ℓ′ that does not satisfy ℓ′ ⊑ ℓ.
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Using the terminology introduced above, an information flow policy
can specify that, for all ℓ, ℓ-high program inputs should not flow to ℓ-low
program outputs. This information flow policy is not specific enough
yet to be enforced on programs. So, we instantiate this policy as an
information flow property of a deterministic program: whenever two
executions of the program agree on initial values of ℓ-low variables (i.e.,
ℓ-low inputs), and possibly disagree on initial values of ℓ-high variables
(i.e., ℓ-high inputs), they should agree on final values of ℓ-low variables
(i.e., ℓ-low outputs). This information flow property implies that ℓ-low
outputs do not depend on ℓ-high inputs.

The information flow property described above can be parameterized
with any partial order ⟨Λ,⊑⟩ and any deterministic program C, to form
the following security condition.

Definition 3.1 (Order-based Noninterference - ONI(C, ⟨Λ,⊑⟩, Γ)). Given
a mapping Γ from variables to labels in Λ, a deterministic program C

satisfies order-based noninterference for ⟨Λ,⊑⟩ if the following holds:

∀ℓ∈Λ: ∀τ1, τ2 ∈ T fin
C : τ1.M0 =ℓ τ2.M0 =⇒ τ1.M↓ =ℓ τ2.M↓

where

M =ℓ M ′ ≜ ∀x∈var(C) : Γ(x) ⊑ ℓ =⇒ M(x) = M ′(x)

Notice that ONI can express an integrity or confidentiality informa-
tion flow property depending on the interpretation of the labels that are
considered. Notice also that ONI can express RNI (definition 2.2), since
RNI is equivalent to instantiating ONI with a partial order ⟨{ℓ, ℓ′},⊑⟩
that satisfies ℓ ⊑ ℓ′.

3.4 Associating Data with Labels

In practice, it is not trivial to select appropriate labels for data (Bergström
and Åhlfeldt, 2014). Given that data are considered assets, one needs
first to assess the value of these assets. This assessment will then im-
pact the level of protection that should be applied. And these levels of
protection will be ultimately represented as labels. So, it seems that
associating labels with data needs human intervention. A challenging
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open problem would be to find the minimum human intervention re-
quired such that entities are correctly labeled (neither overclassified nor
underclassified) in an automatic way.

Labels can be associated with new data that enter a system based
on certain constraints (Akl and Denning, 1987), such as predicates on
data or predicates on labels of other data. For example, information
about a new flight reservation that enters the system might need to be
labeled Secret if the destination of that flight is anywhere in Antarctica.
In general, the constraints under consideration should be:

– Consistent: for any pair of constraints, when they are simultane-
ously satisfied, they do not prescribe conflicting labels for new
data.

– Complete: each new data piece should be mapped to a label.

Ideally, constraints should be solved such that the satisfying labels
impose minimum restrictions on the associated data (Dawson et al.,
1999). These constraints can also be used to associate desired labels to
a collection of data, and thus this approach can address the aggregation
problem (Meadows, 1990), which is when “two or more data items are
considered more sensitive together than they are separately”. Notice
that the constraints discussed above are solved once for each new data
item. In general, such constraints might depend on the execution state
of a system and be solved dynamically for all data items (existing and
new ones). In this way, the label of a given data item might change
throughout system execution. Section 6 discusses frameworks that could
support this general case.

A common design decision that one has to make is the level of
granularity at which information is labeled. In general, finer-grained
labeling schemes offer greater control over information, but might require
more elaborate enforcement mechanisms. Taking a database as an
example, will information be labeled at the granularity of entire tables,
rows within a table, or individual values within a row? Clearly, labeling
rows within a table is finer grained than labeling only tables, and labeling
values within a row is still finer. Going even lower in the implementation
stack, one can associate memory pages, cache lines, and registers with
labels (e.g., Ferraiuolo et al., 2018).
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Also, will labels be associated with the containers of data or the data
itself (Woodward, 1987; Hartman, 1988)? Associating a label with the
container implies that any data stored in that container is considered to
be associated with that same label. Whereas, associating a label with
the content implies that each piece of information stored in a container
might be associated with a possibly different label. The question of
whether labels are associated with the container or the contents of the
container may be considered either an enforcement issue or a policy
issue depending on the setting. So, such a labeling decision might be
related to expressing the desired restrictions on the use of information,
or it might be related to how to enforce the desired restrictions.
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Threat Model

An information flow property for a system is typically based—explicitly
or implicitly—on a threat model, which formally characterizes how
principals interact with the system. The information flow properties
presented so far (i.e., instantiations of RNI and ONI) considered a
simple threat model, where principals provide initial values of program
variables and observe final values of program variables. The stronger the
threat model is, the richer the set of interactions become, and thus, the
more opportunities there are for information to flow between principals
and the system. In this section we see how noninterference can be
extended to proscribe flows under a variety of commonly employed
threat models. We focus primarily on information flow properties for
several threat models that have been proposed since 2003; Sabelfeld
and Myers (2003b) cover relevant earlier literature.

4.1 Information Channels

An information channel is an entity that conveys or transmits informa-
tion about the system behavior and may be observable by principals.
Adopting the terminology of Lampson (1973), information channels
can be split into legitimate channels and covert channels. Legitimate

24
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channels are those intended to convey information to observers. Ex-
amples of legitimate channels include network ports, files, and printed
program results. Covert channels are illegitimate channels, which are
not intended to convey information. Execution time of a program and
heat emission of a system are such examples.

Covert channels are further categorized based on how adversaries
exploit them. A covert channel exploited by a passive adversary, who
simply observes the conveyed information, is called a side channel.
Side channels are distinguished from other covert channels, where an
active adversary exploits them to signal information from the system to
external parties.

In what follows, we explore threat models that consider different
channels and describe information flow properties that restrict flows
through those channels.

4.2 Termination

The termination behavior of a program can form a covert channel,
known as termination channel. To illustrate, consider the following
program C, which terminates depending on the value stored in sensitive
variable h:

if h > 0 then
while true do skip

else
l := 2

(4.1)

If condition h > 0 holds, then the program diverges, otherwise the
program terminates. So, the termination behavior of the program de-
pends on the sensitive variable h. Thus, under a threat model where
the adversary can observe the termination behavior of that program,
information can flow from sensitive data stored in h to that adversary,
through the termination channel.

An information flow property can specify whether information is
allowed to flow through a termination channel. For example, ONI
(Definition 3.1) allows any information to flow through the termination
channel, since ONI considers only terminating execution traces and
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imposes no restrictions on diverging traces. Taking program C in (4.1)
as an example, and assuming that h is associated with label Secret
and l is associated with label Public, we have that information flow
property ONI(C, ⟨{Public, Secret},⊑⟩, Γ) is satisfied: Whenever two
finite executions of C agree on initial values of Secret variable h, they
also agree on final values of Public variable l. So, program C satisfies
ONI, even though C leaks sensitive information through the termination
channel.

ONI can be extended to consider all traces (including diverging
traces), and thus, proscribe leaks through the termination channel.
This extension of ONI is called termination-sensitive noninterference
(TSNI) (Volpano and Smith, 1997). According to TSNI, high confi-
dentiality inputs of a program should not flow to low confidentiality
outputs and to the termination behavior of the program. Specifically,
for any label ℓ ∈ Λ, if two executions of a deterministic program agree
on initial values of ℓ-low variables (see Section 3.3 for this terminology),
and possibly differ on initial values of ℓ-high variables, then these two
executions should either both diverge, or both terminate agreeing on
final values of ℓ-low variables. Consequently, changing values in ℓ-high
variables does not cause the termination behavior of the system to
change, and thus leaking sensitive information through the termination
channel is avoided.

Definition 4.1 (Termination-Sensitive Noninterference - TSNI(C, ⟨Λ,⊑⟩,
Γ)). Given a mapping Γ from variables to labels in Λ, a deterministic
program C satisfies termination-sensitive noninterference for ⟨Λ,⊑⟩ if
the following holds:

∀ℓ∈Λ: ∀τ1 ∈ T fin
C : ∀τ2 ∈ TC : τ1.M0 =ℓ τ2.M0 =⇒

τ2 ∈ T fin
C ∧ τ1.M↓ =ℓ τ2.M↓

where

M =ℓ M ′ ≜ ∀x∈var(C) : Γ(x) ⊑ ℓ =⇒ M(x) = M ′(x)
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4.3 Time

Sensitive information might flow to adversaries that observe the timing
behavior (i.e., execution time) of a program. Such timing channels can
lead to serious security vulnerabilities. For example, in some cryptosys-
tem implementations, the time taken to encrypt a message depends on
the number of 1’s in the encryption key, and thus the time it takes to
encrypt a message reveals information about the encryption key (Kocher,
1996). So, sensitive information about the encryption key is leaked to
the adversaries through the timing channel.

An information flow property can specify whether information may
flow through a timing channel. To do this, consider an auxiliary variable
T that models the execution time. An extension of ONI (definition
3.1) can then proscribe flows from sensitive inputs to T : it suffices to
extend definition M =ℓ M ′ with the conjunct M(T ) = M ′(T ). The
resulting security condition then stipulates: For any label ℓ ∈ Λ, if
two executions of a deterministic program agree on initial values of
ℓ-low variables (see Section 3.3 for this terminology), and possibly differ
on initial values of ℓ-high variables, then these two executions should
either both diverge, or both terminate agreeing on final values of ℓ-low
variables and on the execution time T . This extension of ONI, which is
called time-sensitive noninterference (Kashyap et al., 2011), proscribes
the flow of information from ℓ-high variables to the execution time T ,
and thus, it avoids the creation of a timing channel to the adversaries.

Similar to timing channels, information flow properties can ex-
press restrictions on flows to other covert channels, such as acoustic-
emanations channels (e.g., Guri et al., 2017) and heat-emission channels
(e.g., Masti et al., 2015). A general approach is to introduce an entity,
such as an auxiliary program variable, that models the covert channel
under consideration, assume that this variable is observable by the
adversary, and require that no sensitive information is allowed to flow
to that variable. The challenge is to ensure that the model is accurately
capturing the covert channel; especially if this covert channel is based
on physical characteristics of the system, such as heat emission.
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4.4 Interaction

Applications can emit streams of outputs during execution. Such steams
might leak sensitive information to observers. Consider, for example,
the following program:

if h > 0 then
l := 2; l := 3; l := 4

else
l := 2; l := 3

(4.2)

Depending on the sensitive information stored in Secret variable h, the
observers of Public variable l receive different output streams (they
observe 2, 3, 4 when h > 0, and 2, 3 when h ̸> 0). So, sensitive infor-
mation about h is leaked to Public principals, who observe the Public
variable l. Progress-sensitive noninterference (PSNI) (Askarov et al.,
2008; Askarov and Myers, 2010) can proscribe such leaks. PSNI stipu-
lates that executing a program on memories indistinguishable for Public
principals should produce indistinguishable output streams for these
principals, too. PSNI also requires that the termination behavior of these
executions should be indistinguishable for Public principals. Askarov
and Myers (2010) propose progress-insensitive noninterference (PINI)
to relax that last requirement on the termination behavior. So, under
PINI, sensitive information might leak to Public principals through the
termination behavior of a program.

Principals might provide streams of inputs during program exe-
cution, too. Bohannon et al. (2009) study reactive programs, which
produce streams of outputs as a response to streams of inputs provided
by principals during execution. A reactive program satisfies reactive
noninterference when input streams that are indistinguishable for a
principal lead to output streams that are indistinguishable for that
principal, too.

Suitable information flow properties for reactive programs had been
studied early on in the literature. Noninterference, proposed by Goguen
and Meseguer (1982), stipulates that for any execution trace τ , there will
always be another execution trace τ ′, such that τ ′ has no high confiden-
tiality inputs and agrees on low confidentiality inputs and outputs with
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τ . In this way, an adversary that observes low confidentiality inputs and
outputs would not know whether these observations were due to τ , which
actually involves sensitive information, or τ ′, which involves no sensitive
information. So, with this security condition, which we will be calling
Goguen–Meseguer Noninterference (GMNI), no sensitive information is
leaked to the adversary. Alternatively, noninference (O’Halloran, 1990)
stipulates that removing all high confidentiality inputs and outputs from
an execution trace should result in a valid execution trace. Generalized
noninference (McLean, 1994) relaxes noninference by requiring that
removing only the high confidentiality inputs (not high confidentiality
outputs) from an execution trace results in a valid execution trace.
Allen (1991) and Zakinthinos and Lee (1997) provide a comprehensive
comparison of these security policies.

Inputs that a principal provides to a program might depend on
previous inputs and outputs that this principal has witnessed. Strate-
gies (Wittbold and Johnson, 1990) can be employed to model this
behavior. Strategies are mappings from sequences of inputs and outputs
to the next input that the corresponding principal will provide to the
program. O’Neill et al. (2006) build on nondeducibility on strategies, a
security condition proposed by Wittbold and Johnson (1990), to propose
an instantiation of noninterference that proscribes leaks to adversaries
modeled by strategies.

The more powerful the adversaries, the more sophisticated the strate-
gies that they employ. Thus, a system that satisfies noninterference
against a certain set of strategies, might leak information against a
different one. Clark and Hunt (2008) study the relation between in-
stantiations of noninterference that are expressed against different sets
of strategies. The authors proved that noninterference against the set
of all strategies AS (including non-deterministic ones) is equivalent
to noninterference against the set of all deterministic strategies DS.
So, a system that satisfies noninterference against DS, it also satisfies
noninterference against AS. The authors also consider set SS of all
stream strategies: strategies that return the next element in a prede-
termined stream without depending on previously observed inputs or
outputs. For deterministic programs, they show that noninterference
against SS is equivalent to noninterference against AS. Consequently,
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for deterministic programs, it suffices to model adversaries’ behavior
with a stream.

Programs can be used to model computable strategies. In this case,
the execution of the original system and the execution of the program
that represents the attacker’s strategy might be regarded as concurrent
processes. Focardi and Rossi (2002) follow this intuition by modeling a
hostile environment with a program that executes in parallel with the
program of interest. The authors express a security condition appropriate
for dynamic hostile environments, called Persistent Bisimulation-based
Non Deducibility on Compositions (P_BNDC). This security condition
stipulates that every execution step of program C in any dynamic hostile
environment is indistinguishable, for the adversary, from executing C

alone. This statement quantifies over every hostile environment for every
execution step, which implies that the information flow property can
handle environments that might change during system execution.

Probabilistic strategies have been employed by Tedesco et al. (2016),
as a way to model faults that adversaries induce on a system. In
particular, the authors consider adversaries that induce faults on a
restricted set of memory locations with a probability distribution that
depends on these locations and on the observations the attacker has
made so far. The authors introduce probabilistic fault-resilient non-
interference (PFRNI) as a security condition appropriate for this threat
model: “a system is secure in the presence of faults if, for any attacker
influencing the injection of faults, the probability of a given public
output is independent of the secrets held by the system.”

4.5 Program Code

The threat models discussed so far assume that (i) every principal knows
the entire program code and (ii) no principal can modify it. These
assumptions are incorporated in the corresponding security conditions.
In particular, the pairs of the executions that are considered by these
security conditions (e.g., ONI) are generated by the same program C.
This means that all principals know that program C is the one that
is being executed. However, there are cases where parts of program
code should remain secret to some principals, following an approach
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known as “security by obscurity”. Proprietary code is such an example.
An interesting problem is to propose information flow properties for
programs that are kept secret to certain principals.

In addition to knowing the program code, adversaries might also
modify the code and data processed by that code. Such active adver-
saries (Zdancewic and Myers, 2001) are considered by Fournet and
Rezk (2008). Given a program C, an active adversary a may write
some code, which reads and modifies certain variables, and place it in
a predetermined hole within C. Program C satisfies noninterference
against active adversary a (ANI), if for any code that active adversary
a decides to insert into program C, sensitive information should not
flow to observations made by a.

Zdancewic and Myers (2001) propose robustness to stipulate that
an active adversary learns nothing more than what a passive adversary
would have learned about confidential inputs of a certain program.
Essentially, robustness implies that if a program satisfies noninterference
against a passive adversary, then it should also satisfy noninterference
against an active adversary. Robustness is extensively discussed in
Section 6.2.

4.6 Views

A threat model might allow different principals to observe different
aspects of system behavior. These aspects can be modeled as views of a
system, which are projections of relevant information from execution
traces to certain principals. For example, a view of a system could be a
memory projection that includes only variables associated with certain
labels. In general, a view can be defined as an arbitrary function applied
to the behavior of a system.

Security conditions can describe allowed or forbidden flows between
different views of a system. Nondeducibility (Sutherland, 1986) is such
a security condition that allows no information to flow between two
views: “given two views f and g on a trace set T , if no possible f -
observation excludes any possible g-observation, then the views are
non-deducible”. Comparing to noninterference, McLean (1990a) observes
that nondeducibility is symmetric, which means that no information
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flows from view f to view g if and only if no information flows from
g to f . For example, if f is instantiated as projecting only the values
of Secret variables in a memory and g as projecting only the values
of Public variables, then nondeducibility implies that information is
not allowed to flow from Secret to Public, nor from Public to Secret.
This symmetry, which might lead to more restrictive information flow
properties than desired, could be avoided using methods proposed by
Halpern and O’Neill (2002). Focardi and Gorrieri (1995) discuss and
compare multiple instantiations of nondeducibility and noninterference.
More recently, nondeducibility has been used as a desirable security
condition in the context of cyber-physical systems (Bohrer and Platzer,
2018).

Hughes and Shmatikov (2004) propose a special instance of nonde-
ducibility, called opaqueness. As described by Schoepe and Sabelfeld
(2015), “a predicate on system behaviors is opaque if for any behavior
that satisfies the predicate, there is another behavior that is indistin-
guishable by the attacker but where the predicate no longer holds”.
Hughes and Shmatikov express anonymity, unlinkability, and privacy
guarantees in terms of opaqueness. So, given the relations that are
formed above, anonymity, unlinkability, and privacy could be inter-
preted as information flow properties.

Figure 4.1 summarizes the threat models discussed in this section,
accompanied by representative security conditions that prevent leaks
to corresponding adversaries.

The adversary can: Example security conditions
Observe termination Termination-sensitive noninterference
Observe time Time-sensitive noninterference
Observe output stream Progress-sensitive noninterference

and provide input stream Reactive noninterference, GMNI, non-
inference, generalized noninference

and use input strategies Nondeducibility on strategies
and be a concurrently
executed program

P_BNDC

Write program code Noninterference against active adver-
sary

Observe views of system behavior Nondeducibility, Opaqueness

Figure 4.1: Security conditions for different threat models.
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Computational Models

Information flow properties describe allowed or forbidden flows between
entities of a system. These entities are identified based on a computa-
tional model, which abstracts system functionality, and a threat model,
which describes how an adversary might interact with the system. A
computational model can capture the implementation details of a sys-
tem more or less faithfully. But the more faithfully the computational
model captures these details, the more it may expose opportunities for
information to flow between system entities and the adversary. This
section considers suitable information flow properties that restrict these
flows.

5.1 Nondeterminism

A crucial design decision for defining a computational model is whether
this model is deterministic or nondeterministic: whether identical system
inputs lead to identical outputs or possibly different outputs. Nondeter-
minism naturally arises in practice, for example due to concurrency or
due to underspecified operations. For instance, considering execution
time as a modeled output, it is apparent that in practice, multiple exe-
cutions of the same program under identical inputs may have different
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execution times. And this nondeterminism on the execution time can
be considered a consequence of underspecified executed commands.

Sensitive information might leak to adversaries through the nonde-
terministic behavior of a system. Consider, for example, the following
program:

if h > 0 then
l := 2 || l := 3

else
l := 2 || l := 4

(5.1)

where || denotes a nondeterministic choice between two commands, h

is a Secret variable, and l is a Public variable. If at the end of the
execution l is 3, then it can be deduced that h > 0 holds; if at the end
of the execution l is 4, then h ̸> 0 holds. So, sensitive information is
leaked from Secret h to Public l.

Observational determinism (Roscoe, 1995; Zdancewic and Myers,
2003) can proscribe such leaks. Observational determinism is essentially
ONI (definition 3.1) for nondeterministic programs: executing a program
on inputs that are indistinguishable for an adversary should yield
indistinguishable outputs. So, from the adversary’s points of view, a
nondeterministic system should behave deterministically. As expected,
program (5.1) does not satisfy ONI.

Some may find observational determinism too restrictive, since
it forbids any nondeterminism on Public observations, even if this
nondeterminism conveys no sensitive information. Consider, for instance,
a modification of (5.1), where the condition here involves Public l′

instead of Secret h:
if l′ > 0 then

l := 2 || l := 3
else

l := 2 || l := 4

(5.2)

Notice that no sensitive information is leaked when executing this
program. However (5.2) does not satisfy observational determinism,
because executing the program twice with the same value of Public l′
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(e.g., a value that satisfies l′ > 0) might yield different values of Public
l (e.g., l can be 2 or 3).

On the other hand, possibilistic information flow properties allow
some nondeterminism on Public observations, provided this nondeter-
minism does not leak sensitive information. Generalized noninterference
(GNI) (McCullough, 1988) is a possibilistic security condition, since
it requires the possibility of the occurrence of a Public output to be
independent of Secret inputs. GNI stipulates that executing a program
on different Secret inputs should not cause the set of possible Public
outputs to change. As desired, program (5.2) satisfies GNI, since the set
of possible values assigned to Public l does not depend on any Secret
inputs.

McLean (1994) interprets GNI as follows: Secret inputs do not
constrain the possible Public observations (e.g., inputs and outputs).
Specifically, for a system that satisfies GNI, there exists an execution
trace for every possible combination of Secret inputs and Public obser-
vations. Equivalently, for every two execution traces of the system, there
exists a third one that combines the Secret inputs of the first one and
the Public observations of the second one. The following definition of
GNI is due to Clarkson and Schneider (2010a) and based on McLean’s
version of GNI.

Definition 5.1 (Generalized Noninterference - GNI(C, {ℓ, ℓ′}, Γ)). Given a
mapping Γ from variables to labels in {ℓ, ℓ′}, a nondeterministic program
C satisfies generalized noninterference from ℓ to ℓ′ if the following holds:

∀τ1, τ2 ∈ T fin
C : ∃τ3 ∈ T fin

C : τ1.M0 =ℓ τ3.M0 ∧ τ2.M0 =ℓ′ τ3.M0

∧ τ2.M↓ =ℓ′ τ3.M↓

In contrast to observational determinism, possibilistic information
flow properties do suffer from refinement attacks, where an adversary
might drive the system to expose only a subset of the possible outputs,
causing sensitive information to leak. Considering GNI, it is the existen-
tial quantifier in definition 5.1 that prevents closure under refinement,
and thus, enables a refinement attack: if a set T of execution traces
satisfies GNI, then a subset of T might not necessarily contain sufficient
witness traces to satisfy the existential quantifier. So, given a system
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that satisfies GNI, an attacker might preclude some possible executions
of the system and force it to leak sensitive information and violate GNI.

Possibilistic security conditions, such as GNI, do not consider the
probability distributions of observed values. However, if sensitive infor-
mation influences the distribution of observed values, some information
might be leaked. Consider, for example, the parallel composition of
command C1 : “while s > 0 do s := s− 1 end; p := 2” and command
C2 : “p := 1”, where s is a Secret variable storing a non-negative integer
and p is a Public variable. The overall concurrent program satisfies GNI
from Secret to Public, because the possible final values of Public variable
p are either 1 or 2, independently of the initial Secret value of s (for
any value of s, C2 might execute before or after C1, so the final value of
p might be 2 or 1, correspondingly). However, Smith (2006) points out
that the probability for p to be 2 at the end of execution does depend
on the initial value of s: the larger the initial value stored in s, the more
likely is for C1 to complete execution last, and thus, the more likely is
for the final value of p to be 2. So, s leaks to the probability distribution
of p. Volpano and Smith (1999) propose probabilistic noninterference to
proscribe such leaks. This security condition proscribes leaks through
timing channels, too. Later, Smith (2006) relaxes probabilistic noninter-
ference to weak probabilistic noninterference, which allows leaks through
timing channels.

Figure 5.1 summarizes the comparison between observational deter-
minism, possibilistic, and probabilistic security conditions, which are
appropriate for nondeterministic systems. This comparison examines
(i) whether the security condition allows some nondeterminism to be
observable by the public (provided this nondeterminism does not leak
sensitive information), (ii) whether it defends against refinement at-
tacks, and (iii) whether it can prevent leakage through the probability
distribution of the outputs, which are observed by the adversaries.

5.2 Composition of Systems

A system can be modeled as a composition of subsystems. Such sub-
systems can be connected with each other using a combination of the
composition constructs below:
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– Sequential, where the output of one subsystem becomes the input
for the next one,

– Parallel, where an input is copied to several subsystems and the
outputs of the subsystems are merged into one output, and

– Feedback, where outputs of a subsystem become its own inputs.

Allows public
non-

determinism

Defends against
refinement

attacks

Defends against
leaky output
distributions

Observational
Determinism X ✓ ✓

Possibilistic ✓ X X
Probabilistic ✓ ? ✓

Figure 5.1: Comparing security conditions for nondeterministic computational
models. Note that it is unclear what constitutes a refinement attack against a
probabilistic system.

McCullough (1988) points out that the mere composition of deter-
ministic components might give rise to nondeterminism. For example,
under parallel composition, outputs from system components might be
nondeterministically merged into the output of the whole system. For
this reason, the author proposes GNI to proscribe leaks through this
nondeterministic behavior.

To facilitate the modular development of secure systems, researchers
have studied the compositionality of proposed information flow proper-
ties. In general, a compositionality problem (McLean, 1994) is formu-
lated as follows: given a system that satisfies property Φ and a system
that satisfies property Φ′, what is the property that is satisfied when
combining these two systems under a certain composition construct?
Zakinthinos and Lee (1996) study the compositionality of GNI, showing
that the only possible interconnection that can cause a system con-
structed from GNI secure components not to satisfy GNI occurs under
a feedback composition of two components.
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McCullough (1988) studies the compositionality of nondeducibility,
after showing that GNI implies nondeducibility (but not vice-versa). He
concludes that nondeducibility is even less composable than GNI. The
author also shows that if nondeducibility is strengthened by forbidding
unsolicited write–ups (i.e., “a high–level output at a time when there
has been no high–level input requesting it”), then compositionality is
restored.

Zakinthinos and Lee (1995) studied whether the satisfaction of
GMNI by certain system components imply the satisfaction of GMNI
by the composition of these components. Assuming that an output from
one system component can immediately become an input to another
system component (and thus avoiding nondeterminism), the authors
prove that GMNI is always preserved by a feedback-free composition of
systems. Additionally, the authors show that there are conditions under
which GMNI can be preserved by a feedback composition of systems,
too.

Mantel (2002) derives compositionality results for several security
conditions (e.g, nondeducibility, separability, noninference, generalized
noninference, generalized noninterference). Later, Mantel et al. (2011)
propose SIFUM-security (i.e., Secure Information Flow Using Modes)
as a security condition that can be preserved under parallel composition.
This security condition enjoys increased permissiveness by incorporating
assumptions (i.e., assume/guarantee statements) about the protocol
that concurrent threads employ to access shared resources.

5.3 Concurrency

In concurrent systems, processes are interleaved, and thus informa-
tion might flow from one process to another through this interleaving.
Sabelfeld and Myers (2003b) give an overview of information flow prop-
erties that describe which of these flows are allowed or forbidden. Here,
we mainly focus on information flow properties proposed since the
publication of that paper.
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Interactive Processes

Rafnsson and Sabelfeld (2014) consider concurrent processes that inter-
act with each other through input and output channels. The proposed
security conditions are possibilistic versions of PSNI and PINI (dis-
cussed in Section 4.4): the possibility of the occurrence of a sequence of
observable outputs should be independent of sensitive input sequences.
The authors also study conditions under which possibilistic PINI and
possibilistic PSNI are preserved under parallel composition of processes.

Scheduling

In some concurrent systems, a scheduler decides which thread will
be executed next. But this decision might leak sensitive information.
Consider, for example, the following concurrent program, which is
discussed by Zdancewic and Myers (2003):

l := true | l := false | l := h

where h is a Secret variable that stores a Boolean and l is a Public
variable, whose final value is observed by the adversary. This program
satisfies GNI, because the set of possible final Public values observed by
the adversary (i.e., {true, false}) is independent of the value in Secret
h. However, if we consider a scheduler that always executes the third
thread last, then the Secret value will leak to the adversary. Here, the
scheduler refines the behavior of the system by allowing fewer possible
executions, and thus, it exposes a leak.

If sensitive information is used to make scheduling decisions, then a
scheduler might leak this information, too. Russo and Sabelfeld (2006)
give the following example: if the number of some new threads added
in the thread pool depends on a secret and the decision to schedule the
next thread depends on the number of threads in that pool, then the
secret might leak to subsequent public observations.

An information flow property can be used to proscribe leaks, against
a specific scheduler, a class of schedulers, or all schedulers. Smith (2006)
proposes a probabilistic information flow property that considers a uni-
form scheduler, which picks the next thread to be executed uniformly
at random. Sabelfeld and Sands (2000) and Russo and Sabelfeld (2006)
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regard a scheduler as a special program that runs concurrently with
the rest of the threads. The authors express the proposed information
flow properties with respect to a class of schedulers that satisfy nonin-
terference and some additional security constraints. Then, a concurrent
program is considered secure if executing it under any of those sched-
ulers does not leak sensitive information. Mantel and Sudbrock (2010)
propose information flow properties for robust schedulers, a class of
schedulers where the scheduling of public threads (i.e., threads that
might modify public variables) does not depend on sensitive threads
(which do not modify public variables).

Memory Model

Under concurrent execution, threads issue load and store commands to
a shared memory. The memory model defines the order in which these
commands become visible to each thread. For example, according to
the sequential consistency (SC) memory model, all commands appear
to be executed in a sequential order that obeys the order in which each
thread issues its own commands. Total store order (TSO) is a weaker
memory model, which is exposed by many hardware architectures and
programming languages, as it allows more efficient implementations than
SC. Vaughan and Millstein (2012) show that the memory model affects
whether a certain concurrent program satisfies a given information
flow property. In particular, the authors give a concurrent program
that satisfies possibilistic noninterference when executed under SC and
violates possibilistic noninterference when executed under TSO. They
give a concurrent program for the opposite case, too. So, possibilistic
noninterference under SC is incomparable to possibilistic noninterference
under TSO.

In addition to SC and TSO, Mantel et al. (2014) study the IBM 370
and the partial store order (PSO) memory model and show that possi-
bilistic noninterference for PSO, SC, and TSO are pairwise incomparable.
Note that these results arise because the different memory models give
different operational semantics to the same program. That is, the set of
possible executions of a given program depends on the memory model
used for execution. By contrast, if a programming language provides
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concurrency abstractions that ensure well-defined semantics regardless
of the memory model of the underlying execution platform, then the
incomparability of noninterference under different memory models is not
relevant for the specification of security in that programming language.

Speculation

For performance reasons, a processor proactively executes commands
under the speculation that this transient execution will be actually
invoked in the future. When a processor misspeculates, the architectural
state (e.g., registers, memory) is reset to values that existed before the
transient execution started, but the microarchitectural state (e.g., cache
or branch predictors) is not. So executions that follow a misspeculation
can exfiltrate secret information that might have been encoded in the
microarchitectural state by that transient execution. Thus, under a
misspeculation, the microarchitectural state might function as a covert
channel that can leak sensitive information to adversaries. Cheang et
al. (2019) present trace property-dependent observational determinism
(TPOD) as an extension of observational determinism (discussed in
Section 5.1) that proscribes such leaks. Guarnieri et al. (2020) propose
speculative noninterference to specify that “speculatively executed in-
structions do not leak more information into the microarchitectural
state than what is leaked by the standard, non-speculative semantics”.
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Reclassification

The information flow policies presented so far imply that if a piece of
data x is associated with a label ℓ, then any information derived from x

is always considered to be associated with ℓ or a more restrictive label
than ℓ (according to a flow relation ⊑). This is a restrictive regime.
In practice, there are conditions under which derived information is
expected to be associated with different labels than those prescribed by
the original label of the original data. Such relabeled information is thus
allowed to flow to different entities than those prescribed by the original
label. This change of allowed flows is called reclassification (Denning,
1975).

Reclassifications specified by confidentiality and integrity informa-
tion flow policies are described using specialized terminology. A declassi-
fication occurs when confidential information is allowed to flow to lower
confidentiality entities. For example, consider a password checker that
compares a user input with a secret password and subsequently outputs
the result to the public. Here, information about the secret password
(whether it equals the user input) is allowed to flow to the public, and
thus, this information is allowed to be declassified. An erasure (Chong
and Myers, 2008) occurs when information is further restricted to flow

42

The version of record is available at: http://dx.doi.org/10.1561/3300000008



43

only to higher confidentiality entities. For example, after the completion
of an electronic payment, the credit card details of the user should
no longer flow to the payment system; these details should actually
be erased from the system. For integrity, an endorsement (Zdancewic
et al., 2001) occurs when lower integrity information is allowed to flow
to higher integrity entities. For instance, when the untrusted user input
is sanitized (e.g., by removing or escaping certain characters), then
the sanitized data can be endorsed and stored in the system. With
a deprecation (Kozyri and Schneider, 2020), information becomes less
trusted. For example, data signed by a key, and any information derived
from this data, becomes deprecated when that key is compromised. In
general, a reclassification, such as declassification and endorsement, that
allows an otherwise forbidden flow towards less restrictive labels (with
respect to a flow relation) is called a downgrade. Whereas, a reclassifi-
cation, such as erasure and deprecation, that requires a flow towards
more restrictive labels is called an upgrade. Figure 6.1 summarizes the
terminology discussed above.

Confidentiality Integrity
Downgrade Declassification Endorsement

Upgrade Erasure Deprecation

Figure 6.1: Terminology for reclassification

Sabelfeld and Sands (2009) survey information flow properties that
can describe declassification. The authors propose healthiness crite-
ria for such properties. They also categorize conditions that permit
declassifications using four dimensions:

• What information may be declassified. For example, one might
allow only the result of the majority function to be declassified to
the public but not the individual votes.

• Where the declassification may occur. An interpretation of this
dimension uses program code locality, where a secret may be
declassified only at a particular program point. Another interpre-
tation is based on the label lattice locality, where a declassification
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stipulates the label with which some declassified data is ultimately
associated with.

• When the declassification may occur. For example, a secret bid is
declassified when the auction closes.

• Who may perform the declassification. A secret, for instance, may
be declassified only under the authority of a particular principal.

This last dimension is discussed in the next section, which concerns the
interplay between information flow policies and authorization.

The current section focuses on the remaining three dimensions (i.e.,
what, where, when) and discusses research mainly conducted after the
publication of the above survey. In particular, the research discussed in
this section proposes reclassification conditions and appropriate infor-
mation flow properties, explores knowledge-based definitions for these
properties, and presents additional healthiness criteria for reclassifica-
tions.

6.1 Reclassification Conditions

Information flow policies and properties can describe conditions under
which a reclassification may or must occur. We examine such reclassifi-
cation conditions and discuss which of the first three dimensions (i.e.,
what, where, when) each condition encompasses.

6.1.1 Trusted Processes

There are cases where information is allowed to flow from one entity
to another only if this flow is mediated by a trusted process (Rushby,
1981). For example, a secret message is allowed to flow to a public
channel only if this message is first encrypted. In this example, the
encryption module is the trusted process that declassifies information
from the secret message to the public. Notice that the flow relation for
this information flow policy is intransitive: secret information is allowed
to flow to the encryption module, the result of the encryption module
is allowed to flow to the public, but secret information is not allowed
to flow directly to the public channel (i.e., without the mediation of
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the encryption module). Noninterference instantiations discussed in
previous sections interpret flow relations that are preorders, which are
by definition transitive. Thus those noninterference instantiations are
not suitable for intransitive flow relations.

Rushby (1992) proposes intransitive noninterference as a security
condition that captures intransitive flow relations for a system that
enables interaction between multiple users. If information is allowed to
flow from user u to user v only when mediated by user w, intransitive
noninterference stipulates that v’s view of the system should look
the same as if one had removed all actions from u that have not
had an opportunity to flow to v via w—actions from u without a
subsequent action from w. Engelhardt et al. (2012) show how intransitive
noninterference can be extended to nondeterministic systems (e.g.,
distributed systems). Later, Lu and Zhang (2020) instantiate intransitive
noninterference with a simpler computational model, where only initial
and final memories are modeled—not interactions between users and
system.

6.1.2 Escape Hatches

Escape hatches are trusted processes at the level of program expressions.
For Sabelfeld and Myers (2003a), an escape hatch declassify(e) indicates
that the result of evaluating declassified expression e may be considered
to have low confidentiality. So, high confidentiality information stored
in variables of expression e may flow to the low-confidentiality final
evaluation of e, signifying a what-declassification. In the general case,
an escape hatch also involves a source label ℓ and a target label ℓ′. The
source label signifies the maximum sensitivity that this escape hatch can
declassify data from; the target label signifies the minimum sensitivity
that this escape hatch can declassify data to. For simplicity, we consider
only two labels (i.e., high and low), in which case an escape hatch simply
declassifies data from one label to the lower one.

An appropriate information flow policy would state that high confi-
dentiality information is allowed to flow to entities with low confidential-
ity only through escape hatches. Sabelfeld and Myers (2003a) proposed
delimited release as security condition that captures this intuition.1

1The original definition of delimited release can handle an arbitrary lattice of
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Definition 6.1 (Delimited Release). Given a mapping Γ from variables
to labels in {L, H} and a deterministic program C containing exactly
n escape hatches declassify(e1), . . . , declassify(en), program C satisfies
delimited release for ⟨{L, H},⊑⟩ iff the following holds:

∀τ1, τ2 ∈ T fin
C : τ1.M0 =L τ2.M0 ∧ τ1.M0 =D τ2.M0

=⇒ τ1.M↓ =L τ2.M↓

where

M =L M ′ ≜ ∀x∈var(C) : Γ(x) = L =⇒ M(x) = M ′(x) and
M =D M ′ ≜ ∀i ∈ [1, n] : M(ei) = M ′(ei)

Notice that delimited release extends ONI with a requirement =D on
memories. Here, the corresponding initial memories need to agree on
values of escape hatches in addition to values of low variables. Under
this agreement, any variation on the rest of the memory components
should not be propagated to the low variables at the final memories.

An implication of delimited release is that a declassified expression
e is considered declassified from the very beginning of each execution
of command C, independently of where escape hatch declassify(e) is
actually found in C. Askarov and Sabelfeld (2007b) illustrate this point
using the following example:

l := h; C ′; l := declassify(h) (6.1)

Command (6.1) satisfies delimited release, even though high variable h

is directly assigned to low variable l. This is because h appears later
in an escape hatch, and thus h is considered declassified (by delimited
release) from the beginning of the program. Under localized delimited
release (Askarov and Sabelfeld, 2007b), an expression in an escape hatch
is considered declassified only after the evaluation of that escape hatch.
So, command (6.1) does not satisfy localized delimited release. Later,
Askarov and Sabelfeld (2009) express localized delimited release using
knowledge-based semantics.2 Notice that localized delimited release can
specify not only what information may be declassified, but also where

labels, whereas this definition, for simplicity, handles only a two-level lattice.
2Section 6.3 discusses knowledge-based semantics for declassification.
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in the program code and when in the execution this declassification
may occur.

In general, when proposing an information flow policy that handles
escape hatches, there are at least three design decisions that need to
be made. The first is whether this policy is sensitive to the location
of escape hatches in a program (e.g., delimited release is not sensitive,
localized delimited release is sensitive). The second decision is whether
the effect of an escape hatch is permanent or not. For example, after
the evaluation of an escape hatch declassify(e), for how long can e be
considered declassified and thus be safely revealed to the public by
subsequent commands? The resetting approach (named by Broberg and
Sands (2009)) has declassifications last until the next declassification
occurs.3 But for delimited release, a declassification lasts until the end
of the execution.

The third design decision considers the value that is expected to
be declassified by an escape hatch. Specifically, given an escape hatch
declassify(e), both delimited release and localized delimited release
consider the value of e at the initial state of execution as the information
allowed to be declassified—as opposed to the value of e at the program
state when the escape hatch is executed. Consider, for example, the
following program:

avg := h1 + h2 + h3
3 ; l := declassify(avg) (6.2)

where h1, h2, h3, and avg are high confidentiality variables, while l is a
low confidentiality variable. If the average of h1, h2, h3 is intended to be
declassified, then program (6.2) would be considered secured. However,
(6.2) does not satisfy neither delimited release nor localized delimited
release. This is because these security conditions allow only the initial
value of avg (i.e., the argument of escape hatch declassify(avg)) to be
declassified—not the value of avg after the first assignment. So, for these
security conditions, the reference point of the declassification is always
the initial state. Lux and Mantel (2009) increase the expressiveness
(and complexity) of these security conditions to support declassifications
with reference points anywhere in the code.

3The resetting approach was not originally proposed to handle escape hatches,
but its main idea can be naturally applied to escape hatches.
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Several extensions of delimited release have been proposed. Com-
posite delimited release (Magazinius et al., 2010) has been developed
for mashups, which are web applications that combine content from
multiple domains. Here all domains should agree on the initial value of
an expression to be declassified.

The security conditions above specify information permitted to be
released (e.g., flow from high to low). However, there are cases where a
system is obliged to release information, too. Chong (2010) combines
delimited release with required release to define bounded release, which
stipulates both what information may be released and what information
must be released, ultimately setting upper and lower bounds of the
released information. Contrary to other security conditions discussed
so far, the author points out that required release is instantiated as a
trace property.

Based on relational logic, Chudnov et al. (2014) use pre- and post-
conditions in program code to implement escape hatches. In particular,
the authors propose the use of assume and assert commands in the pro-
gram code as a way to express (and enforce) information flow policies
for reclassification. For example, given a program that checks pass-
word equality and declassifies the result, “assume A (public_in =
secret_in)” should be inserted at the beginning of the code and
“assert A result_out” should be inserted at the end, meaning that
if two executions agree (i.e., A) on whether public_in = secret_in

holds, then they should also agree on the result of the check. The secu-
rity condition that the authors present stipulates that a trace is secure
if any other trace, either satisfies the assert clause (i.e., agreement A
with respect to the first trace), or fails to satisfy the assume clause, or
diverges. Chudnov and Naumann (2018) extend the above framework
to handle inputs and outputs during execution.

6.1.3 Functions

Some researchers have aimed to make information flow policies sepa-
rate from and independent of the program code. An information flow
policy that is simply represented by a lattice of labels (noninterference
instantiations, such as ONI, capture the semantics of such policies)
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enjoys this independence, since its meaning does not depend on the
specifics of a particular program. On the other hand, many definitions of
delimited release are code-dependent, because they rely on annotating
the program (i.e., declassify(e)) to identify escape hatches and the code
location where those escape hatches can be used.

Li and Zdancewic (2005a) propose declassification policies that are
code-independent. Here a confidentiality label is a set of functions
(specifically λ-terms) through which the associated program inputs may
be declassified from secret to public. Relaxed noninterference is then
proposed as the security condition that captures the semantics of these
labels: the program can be rewritten in a form where only specified
functions are applied to secret inputs to compute public outputs.

Li and Zdancewic (2005b) then extend the framework above to
support integrity labels, which are sets of functions, too. Dual to confi-
dentiality labels, which are associated with program inputs, integrity
labels are associated with program outputs. For example, the integrity
label {λx.x%10} associated with an output stipulates that this output
could be computed by first applying λx.x%10 to (possibly) low integrity
inputs and then performing additional computation on the result. So,
by applying λx.x%10 to (possibly) low integrity inputs, the output
may be considered of high integrity, and thus λx.x%10 may cause an
endorsement. Relaxed noninterference is then extended to support these
integrity labels: the program can be rewritten to a form where the result
is computed using one of the functions in the integrity label.

The challenging aspect of the above two approaches, though, is
enforcement: one needs to (conservatively) decide whether the applied
computation implemented in code is equivalent to any function in
the label associated with the argument, in order to deduce whether a
reclassification should be performed. This challenge can be alleviated
when considering a simplified framework. Kaneko and Kobayashi (2008),
for instance, assign unique identifiers to functions that may cause
declassifications, and then use these identifiers in labels and programs to
refer to these functions. The enforcement problem is then reduced from
function equivalence to identifier equivalence. Of course, the downside
is an increased dependency of policy on code. The framework proposed
by Kaneko and Kabayashi can specify how many times a function
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(identifier) should be applied for a declassification to be triggered. The
authors introduce linear relaxed noninterference as an extension to
relaxed noninterference.

In the context of object oriented programming, instead of considering
a set of arbitrary functions as a label, Cruz et al. (2017) consider an
object interface as a label, with the idea that an object interface dictates
the set of methods through which information about the object can
flow to an observer. Thus, depending on the sensitivity of data that the
observer is allowed to read, such an interface might limit the view of
the object. Similarly, Hicks et al. (2006) enable a principal to declare
trusted methods to declassify data. The authors propose noninterference
modulo trusted methods as the desired security condition.

By abstracting functions with identifiers, Kozyri and Schneider
(2020) present a generalized framework for expressing reclassifications.
Here, a reactive information flow (RIF) label associated with a value v

maps each sequence of function-identifiers applied to v, to restrictions on
how the resulting value v′ may be used. Because restrictions imposed on
v′ might be different from those imposed on v, a RIF label can express
arbitrary reclassifications that are triggered by function applications.
As an example, a RIF label on some training data can specify that
this data may initially be considered public, but once used to train
a proprietary machine learning model, the resulting model should be
considered secret. Here, information from public inputs (i.e., training
data) is required to flow to a secret result (i.e., proprietary model), which
constitutes a classification. The authors propose two special classes
of RIF labels. RIF automata are automata-based structures whose
transitions correspond to function-identifiers and states correspond to
restrictions. κ-labels are stack-based structures specialized to specify
how confidentiality restrictions change when consecutive cryptographic
operations are applied to value. Piecewise noninterference (PWNI) is
proposed as a security condition that handles reclassifications specified
by RIF labels.

Cryptographic operations are functions of special interest. Here, an
information flow policy would allow secret data to flow to the public only
if this is data is encrypted. Computational indistinguishability (Laud,
2001) is a security condition that captures this intuition. It requires
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that polynomial-time bounded adversaries cannot efficiently retrieve
secret information from ciphertexts. Notice that noninterference (e.g.,
ONI) is not satisfied by programs that use encryption, because there is
information flowing from the plaintext to the ciphertext, though not
enough to efficiently recover the plaintext. For arbitrary cryptographic
primitives (e.g., encryption, authentication, pseudo-number generators)
in a reactive computational model, computational probabilistic nonin-
terference (Backes and Pfitzmann, 2002) captures the intuition that
polynomial-time bounded adversaries can achieve their goals (e.g., learn
something secret or influence something trusted) with only negligible
probability.

6.1.4 Execution State

A flow of information from one entity to another may be allowed
depending on the execution state of the system. Targeted conditional
delimited release (Do et al., 2016) specifies not only what information
is allowed to be released by escape hatches, but also when this release
may occur. For example, such a policy can specify that the majority
of secret votes (i.e., escape hatch) may be declassified at 8 p.m. (i.e.,
condition on execution state).

Broberg and Sands (2009) propose flow locks to specify declassifica-
tions based on program states. Here, a label p is a set of clauses of the
form Σ⇒ a, which specifies the conditions Σ under which the associated
data is allowed to flow to entity a. In particular, Σ is the set of locks
that should be open for the associated data to flow to a. For example,
a variable h might be associated with label {high; Decl ⇒ low}, which
means that information from h may always flow to high, and it may
flow to low only when lock Decl is open in the execution state. The
following program satisfies this label:

open Decl; l := h; close Decl (6.3)

where “open Decl” opens lock Decl and “close Decl” closes lock Decl.
The authors propose a termination-sensitive and termination-insensitive
version of a security condition that formally characterize the restrictions
imposed by flow locks.
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Broberg and Sands (2010) later proposed paralocks, which increase
the expressiveness of flow locks by incorporating principles from role-
based access control. Here is an example label:

{∀x.{Bidder(x), AuctionClosed} ⇒ x} (6.4)

which specifies that the associated data may flow to any principal x

that is a Bidder , provided lock AuctionClosed is open in the execution
state.

Predicates on execution state have also been employed by Chong
and Myers (2008) to specify information flow policies. In addition to
declassification, the proposed policies can also express erasure. For
example, such a policy can express that user data may flow to the web
application until the session ends, at which point this user data (and
any other information computed based on the user data) should be
erased from the system. The authors propose noninterference according
to policy to capture the semantics of labels. The enforcement of this
security condition involves both static analysis of the program and
a runtime mechanism that ensures values are actually erased when
the specified predicate on execution state is satisfied. By restricting
predicates on execution state to reference only the program counter (i.e.,
program point in the code), instead of referencing arbitrary variables in
the program, Hunt and Sands (2008) avoid the use of such a runtime
mechanism for enforcing the proposed security condition, end-to-end
erasure.

Information flow policies that specify reclassifications based on exe-
cution state tend to capture a temporal aspect of how restrictions on
data should change. For instance, such policies might specify when a
variable should be erased, or for how long a variable may be considered
public. So, temporal logics seem to be suitable for expressing such infor-
mation flow policies. Dimitrova et al. (2012) and Clarkson et al. (2014)
follow this intuition and propose appropriate extension of linear-time
temporal logic (LTL). Balliu et al. (2011) employ temporal epistemic
logic to express information flow policies for what, where, and when
declassification.

The policies discussed so far in this subsection are known as dynamic
policies, where the set of allowed and forbidden flows can change during
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execution. Broberg et al. (2015) survey dynamic policies. The authors
describe a dynamic policy as “a specification of a set of flow relations,
any one of which is active at a given point in time, together with a
specification of how the system transitions between them”. They propose
a characterization of dynamic policies in terms of five facets4 and in
terms of a three-level hierarchy of control. Level 0 is a set of possible
flow relations between information sources (e.g., input variables) and
sinks (e.g., output channels). A flow relation indicates that information
from the source is allowed to flow to the sink. Level 1 selects which flow
relations are allowed. Level 2 constitutes a meta policy for controlling
the way in which the current flow relations (Level 1 control) may be
changed.

More recently, Li and Zhang (2021) systematized previously proposed
dynamic policies using a framework based on knowledge-based semantics
(see Section 6.3). Interestingly, this framework can express both transient
and persistent policies: “A dynamic security policy is persistent if it
always allows to reveal information that has been revealed in the past.
Otherwise, the policy is transient”. Consider for example a secret s that
is declassified to the public and, later, erased again. A persistent policy
would allow s to flow to the public even after the erasure, because
this information has been already revealed to the public. However, a
transient policy would not allow s to keep flowing to the public after
the erasure.

The dynamic policies discussed in this subsection can express “when”
(and “where”) information may be reclassified based on execution-state
predicates. These policies can also express “what” information may be
declassified at the level of variables. For example, they can specify for
the content of secret variable s (i.e., s instantiates the “what” dimension)
to be declassified at midnight (i.e., midnight instantiates the “when”
dimension). However, these policies cannot yet express reclassifications
at the level of expressions: they cannot express that only expression
“s mod 3” of secret s may be declassified at midnight. Expression-level
reclassification can be specified by policies discussed in the previous

4Termination sensitivity, time-transitive flows, replaying flows, direct release, and
whitelisting flows.
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subsection, though they do not support the “when” dimension, in
terms of arbitrary execution-state predicates. A unifying framework
for expressing “when” (i.e., condition on execution state) and “what”
information (i.e., expression of variables) may be reclassified is missing
from the literature.

6.1.5 Interactions

When one considers event-driven programs (e.g., JavaScript web appli-
cations), events (e.g., MouseClick, KeyPress) are state components of
special interest that may be declassified. Vanhoef et al. (2014) propose
policies that may declassify the result of applying a function D to a
confidential event sequence. An example of such policy would specify:
“the average of mouse click coordinates can be declassified after 100
clicks”. The authors propose noninterference under D, which stipulates
that if two input event sequences are indistinguishable to low principals
and yield the same result when D is applied, then the output sequences
should be indistinguishable to these low principals, too.

Alternatively, the conditions under which declassification may occur
can be specified in terms of events. Micinski et al. (2015) employ
linear-time temporal logic (LTL) formulas to specify conditions on
event sequences under which sensitive information about inputs may be
released. Here a declassification condition is a formula ϕ▷S, meaning that
if LTL formula ϕ over events holds at the time an input occurs, then that
input is declassified to label S. The authors propose interaction-based
noninterference (IBNI) as the intended security condition: observational
determinism should hold after all inputs have been declassified according
to the declassification conditions.

Researchers have studied reclassification policies based on the in-
teractions among components of a distributed system. Greiner and
Grahl (2016) focus on component-based systems, where components
are programs that interact with each other through messages. The
authors show that a noninterference statement for what-declassification
is compositional for sequential and parallel compositions that satisfy
certain restrictions.
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Guttman and Rowe (2015) study declassification at the level of a
distributed system, too. Here a distributed system is represented by a
directed graph, where each node encloses a set of local behaviors and
each edge is a channel for synchronous transmission of messages. Set src
of nodes provide the system with possibly sensitive information and set
obs of nodes are those that produce observations to the environment.
The authors show that the sensitive information revealed (or declassified)
to nodes in obs is always upper-bounded by the sensitive information
collectively revealed to the nodes that form the cut of that graph. This
means that nodes in obs cannot learn more information about sensitive
data in src, that what is learned by nodes in that cut.

Best and Darondeau (2012) express declassification policies for
Petri nets, which can model distributed systems. A Petri net is a
directed graph, where a node represents a place or a transition, an
edge from a place to a transition dictates that place to be an input to
the transition, and an edge from a transition to a place dictates that
place to be an output of that transition. In terms of expressiveness,
Petri nets lie between finite state automata and Turing machines. When
labeling transitions with labels in {High, Low, Decl}, the authors express
intransitive noninterference as the requirement that a Petri net where
all transitions labeled Decl are removed is language equivalent to the
Petri net where all transitions labeled Decl or High are removed.

6.2 Robustness

When an operation in a program is allowed to declassify information,
one might need to ensure that an active adversary is not able to exploit
this operation to leak information that should not be declassified. Robust
declassification (Zdancewic and Myers, 2001) captures this intuition
formally. Here an active attacker can observe and modify the behavior
of a system (e.g., overwrite parts of memory). Robust declassification
stipulates that active attackers should not learn any additional confi-
dential information through active attacks than what they could have
learned through only passive observation. Notice that the fundamental
idea of robustness is not confined to reclassifications. In general, ro-
bustness can be regarded as a meta-policy that stipulates the following:
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Given an attacked C and a non-attacked C ′ version of a program, C

and C ′ should exhibit equivalent behaviors with respect to a particular
criterion, such as satisfying a certain policy.

Myers et al. (2006) generalize robust declassification by allowing
untrusted code and data to be part of the system. To do this, integrity
labels are associated both with data and program code. If data or code
is provided or affected by the attacker, then it will be associated with a
label that represents low integrity, otherwise it will be associated with a
label that represents high integrity. The code provided by the attacker
cannot be arbitrary; it should not violate confidentiality and integrity
restrictions directly, say, by assigning high confidentiality variables to
low confidentiality variables. So, the authors consider fair attacks A,
which is code provided by the attacker that can read and write only
low confidentiality and low integrity variables.

Robust declassification is then formalized relative to fairs attacks.
If C[A] denotes a program C where the low integrity components are
provided as an attack A, then robust declassification stipulates: whenever
the behavior of program C[A] is indistinguishable on some memories,
any change of the attacker’s code to any other attack A′ still will leave
the behavior of program C[A′] indistinguishable on these memories. So,
the attacker does not learn anything new by observing the behaviors
of C[A′], comparing to what they already know from observing the
behaviors of C[A]. Notice that a set of at least four execution traces
of the system is needed to establish that this system violates robust
declassification: two traces of C[A] that are indistinguishable for an
attacker on two initial memories and two traces of C[A′] that are not
indistinguishable on these memories. So, robust declassification is a
4-safety hyperproperty.

Myers et al. (2006) employ the following program C as an example
that does not satisfy robust declassification:

if u > 0 then l := declassify(h) else l := 2

where u is an untrusted variable written by the adversary, l is a low
confidentiality variable read by the adversary, and h is a high confi-
dentiality variable. Here, the adversary can control whether h will be
declassified, by choosing appropriate values for variable u. Specifically,
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when the adversary chooses u to be 1 and executes the resulting pro-
gram C[u = 1] on two indistinguishable memories M and M ′, which
disagree on the value of high variable h but agree on all low variables,
then the adversary reads distinguishable values at l. However, when
the adversary chooses u to be 0 and executes the resulting program
C[u = 0] on these indistinguishable memories M and M ′, then the
adversary reads always the same value 2 at variable l. This discrepancy
between the behavior of C[u = 1] and C[u = 0] is the reason why C

does not satisfy robust declassification.
Myers et al. (2006) also propose qualified robustness, which can

allow untrusted code to control declassification though the endorsement
of untrusted data (i.e., provided by the attacker). Later, Askarov and
Myers (2010) propose a more accurate semantic definition of qualified
robustness.

Cecchetti et al. (2017) present transparent endorsement as the dual
of robust declassification. Transparent endorsement forbids endorsement
of information that cannot be viewed, so it uses confidentiality to limit
relaxations of integrity. The authors propose nonmalleability as the
combination of robust declassification and transparent endorsement.

6.3 Knowledge-based Semantics

An information flow policy for confidentiality could be expressed in
terms of allowed or forbidden knowledge acquisition. This approach is
based on the following premise: an entity flows to a principal if and
only if this principal learns new information about that entity. So, by
restricting knowledge acquisition, one restricts the flow of information.
Knowledge-based semantics is particularly compelling for expressing
reclassifications, by intuitively specifying how the knowledge of adver-
saries about certain data is allowed to change during system execution.
Though researchers initially employed knowledge-based semantics to
reinterpret noninterference.

Epistemic logic has been employed to express information flow
policies. An epistemic logic can reason about knowledge, which is se-
mantically modeled by Kripke structures: a principal knows a predicate
Φ if at all worlds that are considered possible by this principal, Φ holds.
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Halpern and O’Neill (2008) employ epistemic logic to express a wide
range of security conditions, including generalized noninterference and
probabilistic noninterference.

Askarov et al. (2008) express TSNI and TINI using a simpler se-
mantic model of knowledge. From the execution traces generated by
this system, principals may observe sequences of outputs. By observing
a certain sequence of outputs, a principal accumulates knowledge about
initial secrets. And this knowledge is modeled by the set of possible
initial memories that would have led to that sequence of outputs. Knowl-
edge is monotonic: by making more observations, a principal’s knowledge
about initial secrets increases (i.e., the set of possible initial memories
becomes smaller) or remains the same, but never decreases. Under the
proposed model of knowledge, the authors express TSNI as: “at each
step of output (real output or divergence signal) the attacker learns
nothing new about the initial high memory”. To express TINI, they
allow knowledge to increase only through progress (i.e., that an output
appeared). The authors prove equivalence between a knowledge-based
statement of TINI and a trace-based one (e.g., ONI). Building on the
model of knowledge proposed by Askarov et al. (2008), Balliu (2013)
defines a logic with temporal and epistemic operators. This logic can
be used to express several security conditions, including generalized
noninterference.

Knowledge-based semantics has been employed to express informa-
tion flow policies for reclassifications. Askarov and Sabelfeld (2007a)
propose gradual release, which specifies that the adversary’s knowledge
about initial secrets may increase only after the occurrence of release
events (e.g., execution of declassify(e)). Conditional gradual release
(CGR) (Banerjee et al., 2008) bounds by how much the adversary’s
knowledge may be increased, based on flowspecs that proscribe infor-
mation allowed to be released. Rocha et al. (2010) build on the ideas of
CGR and introduce policy graphs, which dictate the path of operators a
secret value should flow through in order to be declassified. The authors
define policy controlled release (PCR) as the policy scheme that specifies
allowed flows of information according to policy graphs.

Whether the knowledge of an adversary about an initial secret
changes might depend on the adversary’s ability to recall past events.
Askarov and Chong (2012) apply this observation to systems that

The version of record is available at: http://dx.doi.org/10.1561/3300000008



6.3. Knowledge-based Semantics 59

support dynamic policies. The authors express an information flow
policy with respect to an adversary that is modeled as a state-based
machine, updating its state according to the observed events. The more
powerful a state-based machine is, the more information can be recalled
by the adversary, leading to a stronger adversary. The authors show
counterintuitive scenarios where a program might be insecure for a
certain adversary, but secure for a stronger adversary. This result argues
for defining knowledge-based security policies in terms of change of
knowledge, rather than absolute bounds on knowledge.

In fact, the framework proposed by Askarov and Chong (2012) can
give a knowledge-based interpretation for erasure: a piece of information
is erased if and only if an adversary that cannot recall any knowledge
before the occurrence of the erasure does not learn anything about
that information during the remaining execution. This line of research
supports erasures only for program inputs, but they cannot express
erasures for intermediately computed values (e.g., values that should
be considered secret, even though they have been computed based on
public information). And approaches that do support erasures for inter-
mediately computed values (e.g., Kozyri and Schneider, 2020), employ
program transformations that lead to more restrictive policies than
desired. So proposing security conditions that specify erasures for arbi-
trary computed values, without introducing unnecessary restrictiveness,
is still an open problem.

Glasgow and MacEwen (1989) present obligation logic as the analo-
gous of an epistemic logic for integrity. The authors diverge from the
intuition we have built so far about integrity restrictions (see Section
3.1), which aim to prevent the contamination of trusted information
with untrusted information. They instead equate integrity policy with
the availability requirement that procedures should obtain inputs from
certain sources: “integrity is a requirement that certain information
flows take place between procedures”. So, their security condition for
integrity is actually interpreted as a liveness hyperproperty: information
will eventually flow, and thus new information will be eventually known.
The authors define an obligation logic by extending an epistemic logic
with a modality for obligation. For example, an information flow prop-
erty for integrity would say: “for certain pair of procedures i and j, if i

knows ϕ then j is obligated to know ϕ”.
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Information Flow Policies and Authorization

Authorization policies restrict who can perform what action on which
entity. Access control (Lampson, 1973) and capability-based frameworks
are examples of authorization techniques that can specify, for instance,
which users may read or write certain files in a system. Researchers are
interested in understanding how information flow policies, and autho-
rization policies are related, given that they both impose restrictions
on data. It can be argued that authorization policies and information
flow policies are complementary. For example, authorization policies
can be deployed by information flow policies to control the occurrence
of reclassifications; information flow policies can be deployed to specify
that authorization decisions should not leak sensitive data or depend
on untrustworthy information.

7.1 Information Flow Policies versus Access Control Policies

An access control policy specifies whether a given principal can perform
a given action on a given object. An access control policy is interpreted
as a trace property, since examining single executions is enough to
decide whether that policy is satisfied.

60
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Given that information flow policies are interpreted as hyperprop-
erties and access control policies are interpreted as trace properties,
information flow policies are, in general, more expressive than access
control policies. So, in principle, an information flow policy could ex-
press a given access control policy, though not always as naturally. For
example, the access control policy “s may be read only by Alice”, could
be expressed by the information flow policy “s may initially flow only to
Alice through a read access, and the returned value of that read access
may then flow to everyone”.

In general, access control policies cannot precisely express arbitrary
information flow policies, but access control policies can enforce (that
is, conservatively approximate) information flow policies (Rushby, 1992;
van der Meyden, 2007). Enforcement is possible because access control
policies can prevent flows between objects and principals (Bell and
LaPadula, 1973): if information should not flow from Alice to Bob,
then there should be no object that Alice can alter and Bob can read.
Similarly, if information should not flow from object o to object o′, then
there should be no principal that can read o and alter o′.

Conversely, access control policies can imply information flow poli-
cies: for example, if Alice is allowed to read object o and write object
o′, then information is implicitly allowed to flow from o to o′ If access
control rights may be transferred between principals by delegation, then
additional flows are implicitly specified (Bishop and Snyder, 1979) be-
tween objects. Jaume (2012) uses these ideas to translate access control
policies into information flow policies and then compare the resulting
policies to familiar information flow policies in terms of expressive
power.

McLean (1990b) succinctly compares access control policies to infor-
mation flow policies:

[Access control policies] concern themselves with particu-
lar controls over files in the computer rather than limiting
themselves to the relation between input and output, mak-
ing it harder to reason about requirements and prejudicing
the programmer against alternative, possibly better, imple-
mentations by creating a mindset in which alternatives are
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not considered. A more abstract specification would ignore
system internals and deal directly with input/output re-
lationships. It could require, for example, that output to
low-security users not allow those users to infer properties
of higher-level users’ input.

Nevertheless, as argued by Stoughton (1981), both access control poli-
cies and information flow policies are needed for a secure system. For
example, as described earlier in this section, an information flow pol-
icy that can capture a high-level guarantee for the system, could be
interpreted as concrete and simple access control policies that can then
be enforced on the system. Nanevski et al. (2013) propose Relational
Hoare Type Theory to be a single framework that can express both
access control and information flow policies for a system.

7.2 Authorization for Information Flow Policies

Information flow policies can use authorization decisions to specify
whether certain reclassifications are permitted. For example, an infor-
mation flow policy may allow a file to be declassified if it is performed by
an authorized principal. The Decentralized Label Model (DLM) (Myers
and Liskov, 1997) was the first framework to increase the expressiveness
of information flow policies with authorization decisions. For confiden-
tiality, a DLM label associated with some data specifies the owner of
that data and the set of principals—called readers—to whom this data
may flow. Data may then be declassified, adding more principals to the
readers set. Such a declassification may be performed only by program
code that runs under the authority of a user trusted by the owner of
that data.

DLM labels can specify who is allowed to declassify information,
based on a centralized trust hierarchy between principals. Put in terms of
authorization, a DLM label allows a run-time authority (i.e., a principal)
to increase (i.e., perform an action on) the readers set in the label (i.e.,
object) of declassified values, provided that authority is trusted by the
owner in that label. Essentially the owner of data is also considered
the owner of the associated label (Chen and Chong, 2004), since this
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owner decides how the label changes (by adding more principals in the
readers set). In general, a DLM label consists of a confidentiality and
an integrity component, and the set of DLM labels forms a lattice.

DLM can express and enforce declassifications within decentralized
systems of mutual distrust, where there is no centralized authority that
determines which computation is trusted to declassify sensitive informa-
tion. Chong and Myers (2006) point out that in such a system, where
mutually distrusting principals interact, who is considered to be the
adversary differs from one principal to another. So, the authors extend
robust declassification and qualified robustness to express information
flow restrictions against all possible adversaries, and they show that
DLM satisfies these extensions. Pedersen et al. (2015) extend DLM with
clock expressions that additionally specify when information may be
released to a reader. The resulting Timed Decentralized Label Model
(TDLM), whose underlying semantics is given based on a network of
timed automata, is suitable for Internet-of-Things applications.

Drawing inspiration from capability-based frameworks, Stefan et al.
(2011a) propose Disjunction Category (DC) labels to specify information
flow policies within a system of mutually distrusting parties. A DC label
consists of two Boolean formulas over principals (in conjunctive normal
form and without negations): one for confidentiality that represents prin-
cipals allowed to observe the associated data, and one for integrity that
represents principals allowed to modify the associated data. DC labels
form a lattice, where the flow relation is based on logical implication.
Declassification and endorsement may be performed by code running
on behalf of principals possessing appropriate decentralized privileges.
These privileges, which function as capabilities, are Boolean formulas
over principals, too. So, these privileges may be used to strengthen
the assumption of logical implications, and thus, allow flows that were
previously forbidden. LIO (Stefan et al., 2011b), which is an information
flow control system in Haskell, employs DC labels.

Montagu et al. (2013) present label algebra as a unifying mathemat-
ical framework in which a superset of the label structures presented
above (DLM and DC labels) can be expressed and compared against
each other. Such a label algebra consists of a relation on labels and a
relation on authorities. This relation on authorities directly captures
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the trust hierarchy of DLM and can also encode the logical implication
between the decentralized privileges for the DC labels.

Capabilities have been also employed by the operating system
Flume (Krohn et al., 2007) to support information flow policies for
decentralized systems. In Flume, labels are sets of tags, and thus, they
form a lattice under the partial order of the subset relation. Each process
is accompanied by privileges, which are modeled as capabilities, to add
or remove tags from labels of input data, causing reclassifications. Krohn
and Tromer (2009) use CSP to formalize the security condition that
Flume enforces, which is based on noninterference. Other information
flow control systems that are based on capabilities include Laminar (Roy
et al., 2009), HiStar (Zeldovich et al., 2006), Asbestos (Efstathopoulos
et al., 2005), and Aeolus (Cheng et al., 2012).

7.3 Information Flow Principles for Authorization

An authorization mechanism grants or rejects an attempted access based
on a given authorization policy. But such a policy might be sensitive.
So, deciding whether an access is granted might reveal this sensitive
information. For example, an authorization policy might consist of (i) a
list of suspects and (ii) an assertion saying that only a non-suspect is
allowed to read document X. By requesting a read access to X and then
observing whether that access is granted, users could deduce whether
they are suspects, which is presumably sensitive information. Becker
(2010) addresses this problem by associating authorization policies with
sensitivity labels and using two security conditions, noninterference and
opacity, to proscribe leaks of sensitive information through authorization
decisions. Opacity (Bryans et al., 2008) is equivalent to opaqueness,
which is discussed in Section 4.6, and it was originally applied to
cryptographic protocols. Becker (2010) argues that, in this context,
opacity seems to be more expressive than noninterference.

Components of an authorization policy might encode sensitive in-
formation, because those might be modified by programs that process
sensitive inputs. Consider, for example, the trust hierarchy between prin-
cipals (i.e., an authorization mechanism), which is used by DLM (Myers
and Liskov, 1997) to determine allowed declassifications and endorse-
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ments. If this trust hierarchy is dynamically modified by program code
that adds or removes trust relationships between principals, then sen-
sitive information might flow from program inputs to this hierarchy.
When the enforcement mechanism decides to grant or deny a declassifi-
cation to the public, based on the modified trust hierarchy, the encoded
sensitive information might then be leaked to the public observers: by
observing whether a value is declassified, one can deduce information
about the modified hierarchy, and possibly about the sensitive inputs
that contributed to that modification. So, in this example, information
flows from sensitive program inputs, to the trust hierarchy, and then to
observers of the system’s behavior.

An information flow policy can be used to specify which of the
flows between computational components (e.g., program implement-
ing desirable functionality) and enforcement components (e.g., the
trust hierarchy) are allowed, avoiding unintentional leaks to the public.
FLAM (Arden et al., 2015) is a framework that reasons, in particular,
about the flows between code and the trust hierarchy. With FLAM,
different observers might be allowed to observe the effects of different
parts of the trust hierarchy. FLAM also models the possibility that the
trust hierarchy is stored in a distributed way, so that the communication
among distributed nodes that is needed to answer authorization queries
also could leak information.

Another instance of restricting information flow between computa-
tional and enforcement components is addressed by the security-typed
language RX (Swamy et al., 2006). For authorization, RX supports
role-based security policies, where a role identifies a set of principals. Pro-
grams are then able to dynamically view and modify this set, by adding
or removing principals. So, the roles might encode sensitive information,
which might then leak via observable enforcement actions that depend
on these roles. To prevent those leaks, RX employs metapolicies to
capture the sensitivity of information encoded in these roles. RX is then
shown to satisfy an information flow policy based on noninterference.

In general, an enforcement mechanism might introduce additional
enforcement components (e.g., metapolicies) to capture and protect
information that might have influenced existing enforcement compo-
nents (e.g., role-based security policies). But the additional enforcement
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components might encode sensitive information, too. So, even more
enforcement components might be needed. Kozyri et al. (2019) follow
this argument to its limits, for the case of information flow control,
by considering chains of labels (i.e., enforcement components) and
proposing appropriate security conditions for the overall system. Zheng
and Myers (2007) give an information flow policy for programs that
explicitly declare and manipulate chains of labels.

Information flow policies have been employed to safeguard the in-
tegrity of authorization mechanisms, too. For example, FLAM does
not allow actions taken and data provided by adversaries to influence
the trust hierarchy. Thus, adversaries cannot drive the system to per-
form unintended reclassifications of sensitive data. As another example,
consider a capability-based system where delegation is performed by
propagating capabilities from one party to another. To safeguard this
delegation, Dimoulas et al. (2014) employ a security condition based on
noninterference to specify that only trusted parties may influence the
use and propagation of capabilities.
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8
Quantitative Information Flow Properties

For a system that processes sensitive information, it might be infeasible
or impractical to demand no leakage of sensitive information to the pub-
lic. Section 4 discusses how sensitive information might be inadvertently
leaked through covert channels (e.g., execution time, heat-emission) that
are created during the system execution. Sections 6 and 7 argue that
there are conditions where a leak is actually desirable. But for a leak that
is unavoidable or desirable, one might be interested in understanding
its magnitude, to be convinced that it does not cause more harm than
anticipated. So, there is a need to quantify the information that is leaked.
A wide variety of leakage measurements have been studied within the
research area of quantitative information flow (QIF), whose foundations
are built on information theory. The book of Alvim et al. (2020) offers
a deep understanding of QIF, including program analyses for measuring
information leakage. This section focuses on leakage measurements that
could be employed to express information flow properties.

Quantitative information flow properties set bounds on the amount
of information allowed to flow between entities. So, the amount of infor-
mation can be considered as a quantitative condition for characterizing
allowed or forbidden flows: a flow is allowed only if it conveys an amount
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of information below a certain threshold. An example of a quantitative
information flow policy associated with a secret would specify that at
most one bit of information is allowed to leak from that secret to the
public. Previous sections have presented information flow policies and
properties that use qualitative conditions (e.g., labels, state predicates,
applied operations, authority) to allow flows between entities.

8.1 Expressing Policies

QIF is mainly employed to protect the confidentiality of data. Here,
a secret X is accompanied by a prior distribution π, where π(X = x)
signifies the probability for X to have value x. Given a system that
takes secret X as an input, prior distribution π models the knowledge
that an adversary has about X prior to the execution of that system. If
this system produces an output Y , then by observing the value of Y ,
during or at the end of system execution, the adversary might update
their knowledge about X (e.g., some values of X might be less or more
likely, given the specific output value). This updated knowledge of the
adversary is now modeled by a posterior distribution on X. A leakage
measurement quantifies the difference between the prior and posterior
distribution, and thus, it captures the quantity of information leaked
from X to Y . Alvim et al. (2012b) propose a parameterized measurement
of leakage that can express a class of known leakage measurements.

An information flow property can be expressed as a bound on a
leakage measurement. For instance, an information flow property could
set bounds on the capacity of a system, which is the maximum amount
of information that this system can leak under a given measurement
over all possible prior distributions. As another example, robust leak-
age measurements (Alvim et al., 2014a), which place leakage bounds
independent of the prior distribution, could also be used to express infor-
mation flow properties. Bounds on the rate of leakage (Malacaria, 2007),
for programs with while-loops, can form information flow properties,
too.

Quantitative information flow properties for integrity could be ex-
pressed as bounds on integrity measurements proposed by Clarkson
and Schneider (2010b): contamination and suppression. Contamination
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measures how much untrusted inputs have influenced trusted outputs,
and it is dual to leakage. Suppression is based on program correctness.
Consider a specification and a program that is intended to implement
that specification. An output produced by this program might convey
only partial information about the specified output. Suppression then
measures how much information of the specified output is lost.

Differential privacy (Dwork, 2006) can be interpreted as an infor-
mation flow property in QIF. According to Tschantz et al. (2020), a
function applied on a database satisfies differential privacy when this
function “produces almost identical distributions of outputs for any
pair of possible input databases that differ in a single data point”. This
requirement implies that almost no information flows from a single
data point to the output of the function. Researchers have followed
this intuition to show that differential privacy is equivalent to setting
a certain bound on a leakage measurement (e.g., Alvim et al. (2011)).
But a bound on a leakage measurement is one way to give semantics to
differential privacy. Tschantz et al. (2020) survey different approaches
for giving such semantics, which can incorporate assumptions about the
adversary’s inference power, or assumptions about existing correlations
between data points. The authors emphasize the interpretation of dif-
ferential privacy in terms of causality and point out that the differences
between the discussed approaches boils down to the distinction between
correlation and causation.

Connections have been established between quantitative and quali-
tative information flow properties. Millen (1987) shows that if a system
satisfies noninterference between the input and the output, then the
capacity of this system is zero. For systems that employ cryptographic
primitives, Backes (2005) shows that allowing only a negligible quan-
tity of information flow is equivalent to computational probabilistic
noninterference.

8.2 Varying the Threat and Computational Model

Different computational and threat models expose different means for
information to leak from a system to an adversary. Information flow
properties that are expressed based on leakage measurements adapt
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accordingly to accommodate these differences. Specifically, the selection
of a leakage measurement directly depends on the threat model, which
describes actions that the adversary can take in an effort to correctly
guess the secret. For example, according to Alvim et al. (2020), Shannon
entropy is a measurement that captures the “expected number of yes/no
questions to determine the secret’s value”. And the Bayes vulnerability
is a measurement that captures the probability of correctly guessing
the secret in one try.

A threat model also describes which entities of the system can be
actually observed by an adversary. Malacaria and Chen (2008) define
information leakage against a variety of adversaries: from those that
observe a single low output, to those that can observe low values at
every execution step. Köpf and Basin (2007), followed by Rakotonirina
and Köpf (2019), consider adversaries observing side-channels (e.g.,
timing channels) and measure information leakage based on the number
of consecutive observations on these channels. QIF has been shown
to be particularly well suited for reasoning about information leakage
through covert channels.

The harm caused by a leakage might depend on what was actually
leaked to the adversary. Alvim et al. (2014b) generalize QIF measure-
ments (e.g., Shannon entropy) to accommodate secrets that consist of
multiple fields and are accompanied by a worth assignment, which maps
each field of a secret to its worth. The higher the worth of a field, the
more significant the harm if this field in leaked. Based on this idea, an
information flow property could then describe allowed flows depending
on the associated harm that they might cause.

When consecutive values of a secret are selected based on a certain
strategy, then one needs to protect not only the confidentiality of the
secret, but also the confidentiality of that strategy. If an adversary learns
the strategy in combination with a leaked secret value, then she might
be able to predict future secret values. Mardziel et al. (2014) consider
dynamic secrets that change based on a strategy. For example, consider
a user password that is regularly changed by appending a new digit
each time. The authors propose measurements to quantify the leakage
of such dynamic secrets. Later, Alvim et al. (2017) propose to model
the adversary’s prior knowledge as a distribution on strategies, which
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itself is a distribution on secrets. So, the adversary’s prior knowledge is
modeled as a distribution on distributions on secrets, called a hyper-
distribution. The authors argue that distributions of higher order are
not necessary to soundly quantify the leakage of a secret. They also
generalize QIF measurements for strategies. These measurements can
then be used to construct information flow properties on strategies.

In general, what an adversary believes about the possible values of a
secret might not be true. For example, an adversary might believe that
it is equally likely for a binary secret to be 0 or 1, but in reality, this
secret is more likely to be 0. When the adversary observes the output
of such a system, she might update her belief about the secret input.
Clarkson et al. (2005), followed by Hamadou et al. (2010), propose
leakage measurements that are based on how the adversary’s belief
about a secret input changes upon the observation of an output. So, an
information flow property based on these measurements would specify
restrictions on how the adversary’s beliefs about secrets may change.

QIF measurements have been deployed to capture flows within differ-
ent computational models, such as interactive and concurrent systems.
Alvim et al. (2012a) define for each new output the additional informa-
tion that is leaked about the input sequence processed so far. Mestel
(2019) show that if an interactive system is deterministic, then “the
information flow is either logarithmic or linear, and there is a polynomial-
time algorithm to distinguish the two cases and compute the rate of
logarithmic flow”. Chen and Malacaria (2007) propose leakage measure-
ments for multi-threaded programs, considering threat models sensitive
to the scheduler, the thread’s timing behavior, and/or intermediate
state of the computation. Bounds on these proposed leakage measure-
ments give rise to information flow properties for the corresponding
computational and threat models.

Quantitative information flow properties have been proposed for
quantum system, too. Ying et al. (2013) recognize that even though a
quantum system is a probabilistic system, probabilistic noninterference
is not directly applicable to quantum systems. Instead, the authors
use quantum automata as the computational model and they define an
appropriate version of noninterference for these automata.
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Future Directions

The literature on information flow properties offers many tools for
capturing the complex restrictions on data usage required by today’s
digital society. Research in this field has followed technological and
intellectual advances in computer science and engineering to propose
properties appropriate for new computational models and threat models.
At the same time, the expressiveness of information flow policies has
been constantly increasing, in an effort to capture nuanced conditions
under which flows are allowed or forbidden. Nonetheless, there are
several open research problems, many of which are indeed fundamental.
Addressing these open problems may contribute to the wider adoption
of information flow policies and properties by academia and industry.

Unifying Information Flow Properties

Sections 6 and 7 include approaches that unify subsets of previously
proposed information flow properties into common frameworks. A uni-
fication that is still missing though is a framework to express both
state-based and expression-based conditions for reclassification of ar-
bitrary computed values (not only input values) in an intuitive way.
Complications that arise when attempting to propose such a framework
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might be alleviated, if definitions for information flow are crystallized.
Instead of extending noninterference with exceptions that allow for
different reclassification conditions, one could express information flow
properties with a set of statements of the form “if secret information
flows to a public channel, then this flow should have been established
because a certain condition holds”. When conditions involve function
applications (i.e., expressions), then such a statement would stipulate
that “if secret information flows to a public channel, then this secret
information should have first flowed through a certain sequence of func-
tions”. But definitions for “flow through” have not been systematized
in the literature, yet.

Intelligible Policies and Labels

The inherent tension between expressiveness and simplicity is apparent
in the literature of information flow policies. The more expressive the
policies and labels are, the more precise the specification of allowed
or forbidden flows becomes, enabling a more fine-grained control of
information flow. However, increasingly expressive policies and labels
become less understandable and possibly less usable. To widen the
adoption of information flow policies by programmers, a balance must
be struck between expressiveness and usability. Such a balance could be
achieved if one first understands the needs of the industry: what patterns
of policies are being employed and how frequently these patterns are
needed. Then a suitable framework for information flow policies would
express common patterns in an understandable and succinct way, while
it would still express less common patterns by gradually increasing the
complexity of the syntax. To design such a framework and align the
expressiveness of proposed information flow policies with the needs of
the industry, empirical user studies need to be conducted.

From User Restrictions to Information Flow Properties

Prompted by digital services, end users have to decide how their data
may be used. There is an active area of research that studies appropriate
user interfaces (UI) for the intuitive and informative specification of
data-usage restrictions. For a system that is based on information
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flow properties to achieve rigorous security guarantees, the data-usage
restrictions that are chosen by the end-users should be ultimately
translated into appropriate information flow properties. This seems to
be an interesting research problem, where the researcher would need to
propose a faithful interpretation from the UI syntax to the syntax for
expressing system-wide information flow properties.

Secure Compilation

Secure compilation (Patrignani et al., 2019; Abate et al., 2019) ensures
that the compilation of a program preserves a certain security policy. In
the literature of information flow, this policy usually stipulates that the
program satisfies noninterference independently of the context in which
this program executes. Under secure compilation, if a source program
satisfies such an information flow policy, then the target program should
satisfy that policy, too. But the source program and the target program
are executed under possibly different computational models, which
might affect how the desirable information flow policy is expressed.
So, the two different computational models might lead to two different
versions of the desirable information flow policy. The question that arises
is how to establish that these two versions are semantically equivalent.

Metaconditions

Robust declassification, transparent endorsement, nonmalleability, and
speculative noninterference can be regarded as security metaconditions.
These metaconditions complement information flow properties by im-
posing additional restrictions on flows, and thus, increasing the overall
security of the system. As discussed earlier, robust declassification is
a 4-safety hyperproperty, while many information flow properties are
2-safety hyperproperties. It would be interesting to discover additional
4-safety hyperproperties that would strengthen different aspects of
information flow properties. One might also be compelled to study
whether metaconditions of higher order would be useful. For example,
a meta-metacondition could stipulate that if a system satisfies specula-
tive noninterference against passive attackers, then this system should
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satisfy speculative noninterference against active attackers, too. And
this meta-metacondition seems to be an 8-safety hyperproperty.

Information Flow Properties and Fairness

Machine learning models are ubiquitous in the processing of users’ data.
To maintain control over user’s data, one needs to understand how
data is being processed by these models. Explainable machine learning
is a way to achieve this understanding. Some consider fairness as an
instance of explainable machine learning. But fairness can be interpreted
as an information flow policy: changing the value of the sensitive feature
should not change a particular statistical metric (e.g., positive predictive
value) of the learned model. Establishing such connections will put the
rich literature of information flow properties at the service of fairness.

Quantum Computation

Quantum computing offers a new and intriguing computational model.
Within this model, information flows between entities in ways that are
not possible within a traditional computer (e.g., through entanglement).
Specifying which of these flows are allowed or forbidden seems challeng-
ing. Defining a threat model appropriate for quantum computing would
be interesting, too. Here the mere leakage of some information from the
system to external observers constitutes a measurement that changes
the state of the entire system. With few exceptions, the interplay be-
tween quantum computation and information flow properties has been
largely unexplored.
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