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ABSTRACT

Inheritance is a useful mechanism for factoring and reusing code.
However, it has limitations for building extensible systems. We
describenested inheritancgea mechanism that addresses some of
the limitations of ordinary inheritance and other code reuse mech-
anisms. Using our experience with an extensible compiler frame-

mechanisms do not adequately support our goakafable exten-
sibility: the ability to extend a body of code while writing new code
proportional to the differences in functionality.

In our work on the Polyglot extensible compiler framework [27],
we found that ordinary object-oriented inheritance and method dis-
patch do not adequately support extensibility. Because inheritance

work, we show how nested inheritance can be used to construct®Perates on one class at a time, some kinds of code reuse are dif-

highly extensible software frameworks. The essential aspects o
nested inheritance are formalized in a simple object-oriented lan-

guage with an operational semantics and type system. The type

system of this language is sound, so no run-time type checking is
required to implement it and no run-time type errors can occur.

We describe our implementation of nested inheritance as an unob-

trusive extension of the Java language, called Jx. Our prototype
implementation translates Jx code to ordinary Java code, without
duplicating inherited code.

Categories and Subject Descriptors

D.3.2 [Language Classifications Object-oriented languages;
D.3.3 [Language Constructs and Featurels Classes and objects,
frameworks, inheritance, modules, packages

General Terms
Languages
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Object-oriented programming languages, inheritance, nested
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1. INTRODUCTION

Conventional language mechanisms do not adequately support]

the reuse and extension of existing code. Libraries and module sys- ) ;
dhardly noticeable to the novice programmer.

tems are perhaps the most widely used mechanisms for code reus

a given library can be used by any code that respects its interface.

Inheritance adds more power: it enakfi@neworksclass libraries

that can be reused with some modifications or extensions. But these

Permission to make digital or hard copies of all or part of this work for

fficult or impossible. For example, inheritance does not support

extension of an existing class library by adding a given field or
method to all subclasses of a given class. Inheritance is also in-
adequate for extending a set of classes whose objects interact ac-
cording to some protocol, a pattern that occurs in many domains
ranging from compilers to user interface toolkits. It can be difficult

to use inheritance to reuse and extend interdependent classes.

Nested inheritancés a language mechanism designed to sup-
port scalable extensibility. Nested inheritance creates an inter-
action between containment and inheritance. When a container
(a namespace such as a class or package) is inherited, all of its
components—even nested containers—are inherited too. In ad-
dition, inheritance and subtyping relationships among these com-
ponents are preserved in the derived container. By deriving one
container from another, inheritance relationships may be concisely
constructed among many contained classes.

To avoid surprises when extending a base system, it is impor-
tant that inherited code remain type-safe in its new context; further,
type safety should be enforced statically. Nested inheritance sup-
ports sound compile-time type checking. This soundness is not eas-
ily obtained, because for extensibility, types mentioned in inherited
code need to be interpreted differently in the new, inheriting con-
text. Two new type constructs make sound reinterpretation of types
possible:dependent classesdprefix types

We have designed a new language, Jx, which adds nested in-
heritance to Java. Jx demonstrates that nested inheritance inte-
grates smoothly into an existing object-oriented language: it is a
ightweight mechanism that supports scalable extensibility, yet it is

' Many language extensions and design patterns have been pro-
posed or implemented to address the limitations of inheritance, in-
cluding virtual classes [21, 22, 35], mixins [2], mixin layers [33],
delegation layers [31], higher-order hierarchies [10], and open
classes [6]. A relationship between containment and inheritance is
also introduced by virtual classes and higher-order hierarchies [10],
but there are two key differences. First, unlike virtual classes,
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is required to implement it. Second, nested inheritance associates
nested classes with their containing classes rather than with objects
of those classes.



The rest of this paper explores nested inheritance in more depth.2.2  HoOks and extensibility

Section 2 discusses why existing language mechanisms do not \aking code extensible requires careful design so that the ex-
solve the problems that nested inheritance addresses. Section 3ensjon implementer has available the right hooks: interposition
presents nested inheritance. Section 4 describes the design of Jpoints at which new behavior or state can be added. However,
and discusses adding nested inheritance to Java. We have implethere js often a price to pay: these hooks can often clutter or obfus-
mented a prototype Jx compiler, described in Section 5. Because Jx:ate the base code. One way to provide hooks is through language
is complex, a simpler language that captures the essence of nesteghechanisms that provide some kind of parametric genericity, such
inheritance is presented in Section 6, including its formal seman- zg parameterized types [20], parameterized mixins [2], and func-
tics and static type safety results. Section 7 discusses more broadlygg [24]. Explicit parameterization over types, classes, or modules

related work, and Section 8 concludes. precisely describes the ways in which extension is permitted. How-
ever, it is often an awkward way to achieve extensibility, especially
2. SCALABLE EXTENSIBILITY when a number of modules are designed in conjunction with one

Various programming language features support code reuse, in_apother_and hay@T mutual depend_encies. It is often difficult to de-
cluding inheritance, parametric polymorphism, and mixins. But cide whlch explicit parameters to |ntrqduce for purposes of future
when code is reused, the programmer often finds that extension is€Xtension, and the overhead of declaring and using parameters can
not scalable: the amount of new code needed to obtain the desired®® awkward. _ . o
changes in behavior is disproportionate to the perceived degree of _Inheritance embodies a different approach to extensibility. By
change. More expressive language mechanisms are needed to mak@Ving names to methods, the programmer creates less obtrusive,

extension scalable. implicit parameters that can be overridden when the code is reused.
Nested inheritance builds on this insight by enabling nested classes
2.1 Procedures vs. types to be used as hooks too.

One reason why extension is often not scalable is the well-known
difficulty of extending both types and the procedures that manipu- 3, NESTED INHERITANCE
late them [32, 38]. Object-oriented languages make it easy t0 add  \egteq inheritance is a statically safe inheritance mechanism
new t_ypes but not new procedures (methc’ds) that operate on them'designed to be applicable to object-oriented languages that, like
functional programming style makes it easy to add new proceduresJava [13] or C++ [34], support nested classes or other containment
but not new types. mechanisms such as packages or namespaces. We have designed

Extensions to an existing body of code are ofmar_sein th? a language, Jx, that extends Java with nested inheritance. In this
sense that new types that are added can be treated in a boHerpIat(i

b q dth q h dd ection, we concentrate on describing the nested inheritance mech-
way by most procedures, and the new procedures that are added,ism ignoring details of its interaction with Java and its imple-

have interesting behavior for only a few Of the types on which mentation. These issues are discussed in Sections 4 and 5.
they operate. However, standard programming methods cannot ex-

ploit this sparsity. In an object-oriented style, itis easytoadd new 3.1 Qverview
classes, but to add new methods it is necessary to modify existing
code, often duplicating the boilerplate code. In typical functional
style, adding new functions that manipulate data is straightforward
(assuming that the data representation is not encapsulated behind
module boundary), but modifying existing functions to handle new
data types again requires modifying existing code.

This conflict is particularly noticeable in the context of an ex-
tensible compiler, where new types are added in the form of new
abstract syntax nodes, and new procedures are added in the for
of new compiler passes. With the usual strategy for compiler im-
plementation, adding new abstract syntax requires changes to all

passes, even if the new node types are relevant to only a few PaSSE€{yis notion in one important way: the overriding class is not only a

Similarly, adding a new pass may require changes to all nodes, EVeNshclass but also a subtype of the class it overrides. This feature al-

'tf the p_?ﬁs m:ﬁracts ]lln ?E |tnterest|n? W(;’l.y with on(;y a few dn?de lows more opportunities for code reuse than with virtual classes or
YPEs. us, the conflict between extending procedures an ypesnigher-order hierarchies. In addition, nested inheritance provides a
creates an incentive to structure a compiler as a few complex Passes . of virtual superclassef?2, 8], permitting the subclass rela-

rather than as a larger number of simple passes, resulting in a Ies%ionships among the nested classes to be preserved when inherited

gi%d“lg?r fgg?gr'g g;?stelsir?%rtﬂg t;) urlliigzi;[ﬁn ddc;r:qn;'r:gagh?hnggeﬁ:;into a new container cladsThis feature allows new class members
P pp ’ to bemixed into a nested class by overriding its base class.

interface toolkits. The second key idea in nested inheritance is a rich language for

In_herltance is a useful mechanism for (_exten5|b|I|ty because expressing types so that when code is inherited, types are reinter-
adding new types becomes more scalable: in general, a new type

. - . L - preted in the context of the inheriting class. The innovation is an
can |n_her|t_default behavior from some existing, similar type. How- intuitive way to name types that gives the expressive power of vir-
ever, inheritance does not handle extensions that need to add NeW 4| classes while also permitting sound typing
fields or methods to an existing inheritance hierarchy in a uniform .

S isting | hani do help [6. 33. 311 but Nested inheritance largely eliminates the need for factory meth-
way. Some exisling language mechanisms do elp [6, 33, 31] bu ods [12] and other design patterns that address the problem of scal-
they do not solve the extensibility problems that we have encoun-

tered in developing Polyglot. able extensibility [27]. Thus, a container such as a class or package

There are two key ideas behind nested inheritance. The first
idea is similar to Ernst's higher-order hierarchies [10] and is re-
lated to virtual classes [21, 22]: a class inherits all members of
fts superclass—not only methods, but also nested classes and any
subclass relationships among them.As with ordinary inheritance,
the meaning of code inherited from the superclass is as if it were
copied down from the superclass. A subclass masrrideany of
the members it inherits. Like virtual classes, when a nested class is
nBverridden, the overriding class does not replace the class it over-
rides, but insteaénhancest. Thus, an overriding class is a sub-
class of the class it overrides, inheriting all its members. We extend

INote that the similar-sounding term “virtual base class” is used by
C++ but has a very different meaning.



class A { class A2 extends A { class Java {

class B { int x; } class B { int y; } class Expr {

class C extends B {...} int m(B b) { Type type;

int m(B b) { return b.x + b.y; void accept(Visitor v) {
return b.x; } v.visitExpr(this);

} } }

Cn0O { }
return new CQ); class Plus extends Expr {

¥ Expr left, right;

} void accept(Visitor v) {

left.accept(v);

right.accept(v);

v.visitPlus(this);
}

may contain several nested classes or nested packages that depend }
on each other in complex ways. When the container is extended and class Visitor {
individual components overridden, interactions between the com- void visitExpr(Expr e) { }
ponents are preserved in the derived container. void visitPlus(Plus b) { }
The strength of nested inheritance as an extension mechanismis
that it requires less advance planning to reuse code. Every class and class TypeChecker extends Visitor {
method provides a hook for further extension, so less programmer void visitPlus(Plus p) {
overhead is needed to identify the possible ways in which the code if (...) { p.type = Int; } else ...
can be extended than in the functor and mixin approaches.
In this paper, nested inheritance is presented in the context
of Java’s nested classes. However, the same mechanism applies
equally well to packages or other namespace abstractions. In the Jx

Figure 1: Nested inheritance example

language, packages may have a declared inheritance relationship; Figure 2: Base compiler code
they act very much like classes whose components are all static.
Section 3.7 discusses packages in more detail. class Jif extends Java {
In Java, nested classes can be either inner classes or static nested class Expr { Label 1bl; }
classes. An instance of an inner class has a referenceencos- class Label extends Expr { ... }
ing instanceof its containing class; static nested classes donothave class Visitor {
this pointer. This distinction is discussed further in Section 4.5. void visitLabel(Label 1) { }

In the following discussion, we consider all nested classes to be 3}
static nested classes. This choice allows the mechanism to be ap- class TypeChecker extends Visitor {
plicable to classes nested within packages, which have no run-time void visitPlus(Plus p) {
instances. super.visitPlus(p);
p.1bl = p.left.1bl.join(p.right.1bl);

3.2 Asimple example ¥

Consider the Java-like code in Figure 1. Because alassitains } ¥

nested classeésandc, its subclasd2 inherits nested class@sand
C where the nested class&8.B andA2.C are subclasses @f.B
andA.c, respectively. Clasa2 explicitly declares a nested class
B, overridingA.B; declarations withim2.B (such as the instance
variabley) extendA.B as if A2.B were an explicitly declared sub-

Figure 3: Jif extension

class ofa.B. ClassC is inherited intaA2 as theimplicit classA2.C. 3.3 Comp"er example
The programmer writes no code fa2.C; it is a subclass of both Figures 2 and 3 suggest how nested inheritance can be used to
A2.BandA.C. build an extensible compiler. Figure 2 gives simplified code for an

Subclass and subtype relationships are preserved by inheritanceordinary Java compiler. Figure 3 uses nested inheritance to create
For example, in Figure 1, the clasg.C is a subclass (and a sub- a compiler for a language like Jif [25] that extends Java with in-

type) of A2.B becausél.C is a subclass ok .B. In addition, the formation flow labels. This code uses the visitor pattern [12], in
constructor calhew C() constructs an object of the clasg.C which compiler passes such as type checking are factored out into
when the method is invoked on an object of clage. separate visitor objects, and boilerplate tree traversal is found in

Types named in inherited code are reinterpreted in the inheriting accept methods. Th&xpr andPlus classes implement abstract
context. For example, the argument of the methadd the class syntax tree (AST) nodes, amypeChecker implements the type-

A has typeB, meaningA.B in the context ofA. But when inher- checking pass, inheriting common functionality from its superclass
ited into the clas&2, the argument type becomas. B because the Visitor.
meaning of the nama is reinterpreted in the inheriting context. Nested inheritance is effective for building this kind of ex-

With this changeA2 might not seem to conform tb because an tensible system. By adding a fielcbl to the classExpr, ev-

argument method type has changed covariantly. However, subtyp-ery kind of expression node, includirRjus, acquires this field.
ing between\2 andA is still sound because the type system ensures Similarly, adding avisitLabel method toVisitor causes ev-
them method can only be called when its argument is known to be ery visitor, such agypeChecker, to acquire this new method.
from the same implementation #fas the method receiver. The methodTypeChecker.visitPlus can be then overridden



class A {
class B {...}
class C extends This.B {...}
int m(this.class.B b) {
return b.x;
}
this.class.C n() {
return new this.class.C();
}
}

Figure 4: Desugared version of class from Figure 1

to perform additional static checking on labels in addition to the
ordinary type checking it performs by delegating to the super-
classJava.TypeChecker. Note that the overriddemisitPlus
method expects aif.Plus, which has albl field, rather than a
Java.Plus, which does not.

This example is suggestive of how nested inheritance could be
used to implement the actual Polyglot and Jif compilers. Note that
Jif .Expr and Java.Expr are different classes and both classes
can coexist within the same compiler, permitting Jif abstract syntax
trees to be translated to Java ASTSs.

3.4 Naming types

The examples in Figures 1-3 look very much like Java; a Java
programmer could be excused for not noticing the discrepancies.
In fact, Jx is mostly backward compatible with Java: a Java pro-

run-time class othis. As with ordinary non-dependent classes,
a nested class can be selected fretms . class. If the run-time
class ofthis is A2, thenthis.class.B is really the clas22.B.
If, at run time,this is an instance of clags thenthis.class.B
iSA.B, butnotA2.B.

Declaring the method parameter foasthis.class.B ensures
thatm in A2.B cannot be called with a superclassaaf. B. Callers
of m must demonstrate that the method is invoked wikhsglected
from the receiver’s class. In the following (safe) code, the variable
a contains a value with run-time class.

final A a = new A2();
final a.class.B b = new a.class.B();
a.m(b);

To call the methoch with receivera, the caller must pass an argu-
ment of typea. class.B. Even if the receiver has static type, it
is illegal to invokem with anA2. B, since the actual run-time class of
the receiver may be a subtype!df that overridef2.m. The argu-
ment must have the type class.B. Note thata must be declared
final to ensure its run-time class does not change.

In general, a dependent class is of the fguralass, wherep
is afinal access path: eitherfinal local variable (including
formal parameters anthis) or a field accesg’.f, wherep' is a
final access path anflis afinal field. The run-time class of an
object specified by ainal access path does not change.

The dependent typghis.class is similar to theMyType (self
type) construct of LOOM [3] and PolyTOIL [5]. The key dif-
ference is that wittMyType, an instance of a subtype ¥fType

gram is a valid Jx program as long as nested classes are declarethay be assigned to a variable of tywgType. AlthoughMyType
final or their containing classes are not subclassed. However, Jxis covariant with respect to the subclassing relationship, the type

obtains additional expressive power from new syntax for naming

MyType may be used as a method parameter type because subtyp-

types (which is not shown in Figures 1-3). This syntax can be seening and subclassing are decoupled. The dependentglelsss is

in Figure 4, which shows the clagdrom Figure 1 in a desugared
form.
ClassA.C is declared to extenthis.B. WhenThis is used in a

declaration, it refers to the most specific class that inherits that dec-

laration. In the body o, This resolves tal andThis.B therefore
resolves toA.B. Whenc is inherited intoA2, This.B is reinter-
preted in the context af2 and resolves t@2.B. Thus,A.Cis a
subclass of.B andA2.C is a subclass of2.B.

Returning to Figure 1, observe that the methadkes a formal
parameter of typ8. SinceA2.B is a subclass aof . B, one might try
to write unsafe code like the following, which passedian to the
methodA2 . m:

A a = new A2Q);
A.Bb =new A.BQ;
a.m(b);

Becausel . B does not have & field, the behavior of the memory
access.y in the methodn would be undefined. For this reason
the above code does not type-check in Jx. Of course, this po-

also closely related to the path dependent tgpspe in thevObj
calculus [29] and in the Scala [28]; howevpreype is asingle-
ton type, meaning the only member of the type is the object ref-
erenced byp. p.class is not a singleton. In particular, one can
create new instances of the class through:tée operator (e.g.,
new p.class(...)).

While subclasses of the static type of a pathre not subtypes
of a.class, the same is not true of classes selected relative to
a.class. In particular, using the classes in Figurealclass.C
is a subtype o&.class.B, and therefore the cadl.m(b) above is
permitted.

3.5 Prefix types

Now consider the code in Figure 2, in which the classgs and
Visitor are mutually recursive because of their respectiueept
andvisitExpr methods. The claskif extendsJava, overriding
both classes, sdif.Expr andJif.Visitor are mutually depen-
dent in the same way dava.Expr andJava.Visitor.

For code reus&xpr andVisitor need to be able refer to each

tential unsoundness results because the formal argument type iother without hard-coding the name of their enclosing class.

changed covariantly in the subclass. The virtual class mecha-
nism in Beta [21] is unsound for precisely this reason, and therefore

Our solution is a type system that gives the ability to name the
enclosing class of a given value.

Beta requires a run-time check at method invocation. These checks For a non-dependent cla&s and arbitrary clas3, the prefix

create run-time overhead, but more importantly, they can lead to

type PLT] is the innermost enclosing classbthat is a subclass of

unexpected run-time errors. Our approach is instead to introduceP. Prefix types permit an unambiguous way of naming containers.
a dependent type mechanism that ensures programs are staticallfFor example, assuming the variabléas the static typ#.B, then

safe and thus do not need run-time checks.

In Figure 1, the method.m is declared with a formal parameter
of typeB, which is syntactic sugar for the typis.class.B, as
shown in Figure 4. Thelependent classhis.class denotes the
run-time class of the expressiahis, butnotany subclass of the

A[b.class] is the container of the run-time class of the value in
b; if b contains a value of run-time clagg.B, thenA[b.class]
is the class\2.

In Figure 2 the methodxpr.accept has a parameter with
the (desugared) prefix typgavalthis.class].Visitor, and



Visitor.visitExpr has a parameter with the prefix type 3.8 Genericity

Java[this.class].Expr. ~When accept is invoked on a Nested inheritance is intended to be a mechanism for extensi-
Java.Expr, It expects an argument of typRava. Visitor, but bility and not for genericity. Jx is an extension of Java and, as of
when invoked on alif.Expr, it expectsJif.Visitor. Thus, version 1.5, Java already has a genericity mechanism, parameter-
the relationship among the component classes is preserved. Refijzgqg types.

erences tcExpr within Visitor in Figure 2 are merely sugar Nested inheritance as presented above does not provide an ab-

for Java[this.class].Expr, and conversely for references to  stract type construct. To use virtual types for genericity, abstract
Visitor within Expr. No instance of the clasfava need be in types are used to equate a virtual type with a class. For example,
scope to use the typmava [this.class] .Expr. Thissyntaxthus  the following code fragment implements a gendrist class and
makes it possible to refer to other classes in the current packageg 1,ist of Integers, IntList, in a hypothetical extension of Jx

even though packages do not have instances. with abstract types.
3.6 Overriding the superclass class List {
When overriding a class in a containing class, the programmer abstract class T extends Object { }
can change the superclass. This feature allows new functionality to void add(this.class.T x) { ... }
be mixed in to several classes in the new containing class without }
code duplication. class IntList extends List {
The superclass of a nested cléssindsthe type of the nested class T = Integer;
class. Overriding the superclass permits this bound to be tightened, }

enabling a virtual type-like pattern. In particular,Difis a nested
class that extends some other clasghenD is like a virtual type,
bounded byc; whenD’s container is subclassed, the superclass of
D can be modified to be a subclass of the original superclabs of
This has the effect of making the virtual typenore precise in the
container’s subclass.

By declaringIntList.T to be an alias forInteger, the add
method may be called with an argument of type eger. Without
abstract types, the best that can be done using nested classes is to
declareIntList.T as

class T extends Integer { }

3.7 Package inheritance But in this case, only instances ditList.T can be added to an

The language mechanisms described for nested inheritance apIntList, not instances of th&nteger class. However, a list of
ply to packages as well as to classes. Indeed, we expect nestednteger can be implemented more succinctly as the parameterized
inheritance of packages to be the most common use of nested in-typeList<Integer>.

heritance. . .
In Jx, packages, like classes, may have a declared inheritance:-:,’-9 Final blndmg
relationship. If packag®2 extends package, thenP2 inherits As in Java, classes in Jx may be declafedal to prevent the
all members of package, including nested packagésThe dec- class from being subclassed. This naturally extends to nested in-

laration thatP2 extendsP is made in a special source file in the heritance be requiring thatfanal nested class can be neither sub-
packager2, which facilitates separate compilation by allowing the classed explicitly with arxtends declaration nor overridden in a
packagep to be ignorant of its descendants. The declaratiorots subclass of its enclosing class. Thisal bindingof nested classes
made in each separate source file of the packagsince doing so is useful for enabling optimizations and for modeling purposes. In
would duplicate package inheritance declarations, introducing pos- addition, virtual classes in Beta may be inherited from only if they
sible inconsistencies and making modification of the inheritance are final bound. Jx does not permit inheritance from dependent
relationship more difficult. classes and thus this restriction is not needed.

Prefix types extend to accommodate packageBisfa package Final classes also enable backward compatibility with Java; if all
name andr is an arbitrary class, theR[T] is the innermost en- nested classes afenal, a Jx program is a legal Java program.
closing package of that is derived fronP. Prefix types may also

appear inimport declarations. For example, consider a package 4., |[NTERACTIONS WITH JAVA

P with nested package§ andR, and a source file iy that im- Nested inheritance introduces several new features that are dis-

fhogése 2&11%1?7?&3 gg ﬁr[:ozvrt%%d\?vi:ﬁgjtehvﬁ d?fc?cti(ier? '?::rr:t:rr:;i’ cn‘cussed in Section 3. It is worth discussing how these features in-
P 9 teract with some existing object-oriented programming features in

their enclosing packages. The source fil®inses the declaration Java
import P[Package].R.* to import the appropriate classes. The '
keywordPackage refers to the package of the most specific class 4.1 Conformance
that inherits the import declaration, analogous to the uga b in

a declaration to denote the most specific class that inherits that dec- In Jx, a class conforms o its superclass under the same rules
laration. We use the nanRackage since neithefhis nor this as in Java: a method's parameter types and return type must be

are in scope at import declarations identical in both classes. In principle this rule could be relaxed to
Dependpc)ent claspses on the othér hand. do not need to be eX_permit covariant refinement of method return types, but we have

tended to handle packages because packages do not have run-timréOt explored this relaxation.

instances. 4.2 Method dispatch

In Java, method calls are dispatched to the method body in the
most specific class of the receiver that implements the method. In
2Nested packages are calledbpackagein Java [13]. We refrain ~ the code in Figure 5(a), bot2.B andA . B2 overrideA . B's imple-

from using this term to avoid confusion between nested packagesmentaﬂon ofn. The implicit class\2. B2 inheritsm from bothA . B2
and derived packages. andA2.B. Which of the two implementations is the most specific?




class A { class A2 extends A {

class A { class A2 extends A { class B { } class B {
class B { class Bph { class B2 extends B { Object m() {...}
int m() { return 0; } int m() { return 0; } int mO {...} }
} } } class B2 extends B {
class B2 extends B { class B extends Bipn { } void n() {
int m() { return 1; } int m() { return 2; } n(); // A.B2.m() or
’ ’ // A2.B.m()?!
} class B2pnh extends B { }
class A2 extends A { int m() { return 1; } }
class B { } }
int m() { return 2; } }
¥ Figure 7: Name conflict example
(a) Original code (b)2 with implicit classes
shown initalics have a common ancestdrB, and both declare a methad) , but
with incompatible return types. Both of these method declarations
Figure 5: Method dispatch example are allowed, because in general, each class could be compiled inde-
pendently of the other—particularly, if the containenvere a pack-
A A2 age instead of a class. However, in the method body2oB2.n (),
itis not clear which method () is referred to. In addition, i£2.B2
j—— - wished to override one or both of the methad3, then the method
AB I AB, ! declarations need to indicate which method they are overriding.
) I *' Jx resolves naming conflicts for calls by requiring the caller to
f = 1 AoB cast the receiver of the method invocation to a class in which there
: is no such conflict. For example, ¥2.B2.n(), the method call

((A2.B)this) .m() would be permitted, as the namé) is notin

A.B2 [ conflict in the clasa2.B. Field accesses are handled similarly.
I AB2 : Naming conflicts for method overriding are resolved by ensur-
I ' ing the overriding method declaration supplies the class name of
A2.B2 an ancestor class on which the overridden method is defined. For

example, if the class2.B2 wished to override the methad) de-
clared in class\.B2, the method declaration if2.B2 would be
writtenint A.B2.m() {...}.

Since we expect naming conflicts to be exceptional, rather than
Figure 6: Dispatch order the norm, the additional mechanisms required by Jx to resolve nam-
ing conflicts should not be overly burdensome.

The same issue arises in languages that support multiple inher-4'4 Constructors
itance. For example, in C++ this situation is considered an error.  Nested inheritance requires that constructors, like methods, are
However, because nested inheritance introduces implicit classesnherited by subclasses, so that it is possible to call constructors
this rule would effectively prevent a class from overriding any Of dependent classes and prefix types. Suppose that theAclass
methods of a class it overrides, since its implicit subclasses would contains a constructor that takes an integer as an argument. Then
inherit both implementations. the following code is permitted:

Instead, we exploit the structure of the inheritance mechanism.
WhenA is subclassed ta2, if B is not overridden, it is an implicit
class ofA2. We write this classi2. Bj;n,. Now whenA2.B is de-
clared, overridingt . B, we can consider its immediate superclassto  The expressionew a.class.B(7) is allowed because the stat-
benotA.B, but rather the implicit class2. Binp, inherited intoA2. ically known type of is the clasg, and there is a suitable construc-
We can think of the code far2 in Figure 5(a) as the code in Fig- tor for the class.B. However, at runtime the variabtecontains
ure 5(b). Thus, in order from most to least specific, the classes in g yajue of run-time clasa2, and therefore an object of class. B

final A a = new A2();
final a.class.B b = new a.class.B(7);

A2 are:A2.BZnh, A2.B, and42. Binp, Or equivalentlyA. B2, A2.B, is constructed. In order to be sound, the clag8sB must have a
andA .B. This dispatch order is depicted in Figure 6. ) constructor with a suitable signature. Since B may in general
This dispatch order is not chosen arbitraridyB2 should be dis-  pe an implicit classA2 . B must inherit the constructors af B, and

patched to befora2.B because thd2 classes are specializations  of any other superclasses, in the same way that it inherits methods.
of theB classes, and thus @ classes should be regarded as being  The primary use of constructors is for initializing fields; if a final
more specific than ary class. The same dispatch order is used in fie|d does not have an initializer, then every constructor of the class

delegation layers [31]. must ensure that the final field is initialized. Initializing final fields
. . is particularly important for nested inheritance, because some final
4.3 Nammg conflicts fields may be used to define dependent classes. Failure to initialize

To support separate compilation of classes, Jx needs a mechathese fields would lead to unsoundness. Therefore, if a class de-
nism for resolving naming conflicts, which arise when a class in- clares a final field, that field must either have an initializer, or else
herits more than one implementation of a given method or field. For all constructors inherited from superclasses must be overridden and
example, consider the code in Figure 7. The classB2 andA2.B that field must be initialized in each constructor.
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Figure 8: Target classes and interfaces

4.5 Inner classes Figure 9: Representation of anA2. B2 object
We have assumed that nested classes are static and are thus not
inner classes. An instance of a static nested class does not have a
reference to an enclosing instance of its container class. In Java,Java’s normal method dispatch mechanism cannot be used, because

these enclosing instances are writkerthis, whereP is the name instance objects of superclassescoére not superclasses 0%
of an enclosing class. Jx can accommodate inner classes by assigrninstance object. Hence, the translation must make dispatch explicit.
ing the typeP [this.class] to the enclosing instande this. Each instance class has two constructorsnasterconstructor

Allowing inner classes raises the possibility of extending Jx to and aslaveconstructor. If an object of classis being created,
allow dependent classes to appear indkeends clause of nested then the master constructor @6 instance class is invoked, creat-

classes. For example, if the clas$iad inner clas® and a final ing the other instance objects needed to representCaoliect by

field £, thenB could be declared to extertthis.f.class. De- invoking the necessary slave constructors. The slave constructor of
pendent classes cannot currently appear irettteends clause of C's instance class is invoked when the instance object is being used
a nested class, ahis is not in scope during the declaration of a to represent a subclass@f

static nested class. The instance class also contains the translations of the Jx con-

If the use of dependent classesittends clauses isrestrictedto  structors ofC. Jx constructors are translated into methods in the in-
this.class or prefixes ofthis. class, then the currenttype sys-  stance class, which are invoked by the class class (see below); the
tem of Jx suffices, becauskis.class is equivalent t@his when translation of constructors into methods facilitates the inheritance
this is in scope. References to enclosing instances can be imple-of constructors.
mented as fields of the nested instance, as is dorjatyc and by The instance class farimplements thenethod interfacéor C,
Igarashi and Pierce’s formalization of inner classes [17]. However, which declares all methods thatdefines, as well as getter and
if arbitrary dependent classes are allowed, sucthas . f . class, setter methods for all non-private fields declare@.imhe method
then the type system of Jx would need to be modified, and the im- interface extends all the method interfaces’sfsuperclasses.
plementation described later, in Section 5, would need significant The class clasgrovides means at runtime to both access type

redesign. information about and create new objects (that is, collections of
appropriate instance classes). For every Jx class, there is a single
class class object instantiated at runtime. Every instance class has a
5. IMPLEMENTATION ) Y

method that returns the appropriate class class, analogous to Java’s
We have implemented a prototype translation from Jx to Java as agetClass() method on th@bject class.
3700-line extension in the Polyglot compiler framework [27]. The  Information about’s superclasses, enclosing class, and nested
prototype supports class inheritance but not package inheritanceclasses is available at runtime in order to create instances of pre-
as described in Section 3.7. However, a design for implementing fix types. For example, ifr is a Jx object, and a new object
package inheritance is presented in Section 5.4. The translation isof type P[v.class] needs to be created via a constructor call
efficient in that it does not duplicate code, although each Jx class,new P[v.class](...), thenv's class class must be interrogated

including implicit member classes, is represented explicitly in the to find the class class for the most specific enclosing class of

target language. v.class thatis a subclass ®f The class class object found is then
. used to create the new object: the class clasg floas a method
5.1 Translatlng classes newThis(...) for every constructor declared or inherited @y

As depicted in Figure 8, each source Jx class (including implicit These methods create a new instance class obje¢t, feith the
member classes) is represented in translation by two Java classemaster constructor, and then invoke the appropriate translated con-
and two Java interfaces: tliestance classthe method interface structor on the instance class object.
theclass classand thestatic interface The class class also provides a method to test if a given object is

The instance clasdor a Jx classC contains the translation of an instance of the Jx class, andast (0bject o) method, which
any methods and constructors declared.ifAn object of the Jx throws aClassCastException if the objecto is not an instance
classC is represented at runtime by a collection of instance class of the Jx class, and retureotherwise. These methods are needed

objects, one instance class object ®band each Jx class that to support the translation of casts altktanceof expressions in
subclasses. The instance objects that repre&senint to each other the source language.
via dispatch fields For example, the clags2.B2 of Figure 5 is The class class implements thetic interface which declares

represented by four objects as shown in Figure 9. The instance clasall constructors that declares or inherits. The static interface ex-
also provides methods for accessing fields and for dispatching to tends all static interfaces 6fs superclasses.

methods, including thosginherits; these dispatch methods simply All methods on class class objects are invoked via an appropriate
forward the field access or method call to an appropriate instancestatic interface. This permits the translation of constructor calls
object of a superclass @, using the dispatch fields. Note that on dependent classes. For example, suppasis a subclass of



A. ThenA2's class class implementss static interface. Now, if to model recursive data structures, which interact with dependent
the variablea has static type, the Jx expressiofiew a.class() classes in non-trivial ways. The language includes static nested
will be translated to a call taewThis() on A’s static interface. classes, dependent classes and prefix types.

Supposing that the run-time classzofs A2, then that method call

will actually invokenewThis () onA2’s class class, and thus create 6.1 Syntax

anew instance of2. The syntax of the language is shown in Figure 10. We wtite
5.2 Translating methods mean the lisky, ..., X, andx to mean Ehe sefxy, ..., xn} for some
n> 0. A term with list subterms (e.gf,= €) should be interpreted
as a list of those terms (i.ef; = ey,..., fn = en). We write £X)
for the length ofX. The empty list is writterj]. The singleton list
containingx is denotedx]. We write x, X for the list with headx

A method declaration in a Jx clasds translated into a method
declaration inC’s instance class; any method thainherits has a
dispatch method created @s instance class.

. Since a ;.X objecr: 1S represlented at runtime b_y a coIIecSon of and tailX, andXy , X, for the concatenation ¢ andX».

Instance o jects, the source language expressiiis must be . A programPr is a pair(L,€) of a set of top-level class decla-
translated into something other than the target language expression .| and an expressios, which models the programisain
this, in order to allow method invocations and field accesses on method. To simplify presentation, we assume a single gltial
the Jx object. To achieve this, the translation adds an additional level cléss table TCTwhich maps iop-level class nam@so their
parametegelf to every source Ian_guage method_and c_onstructor. corresponding clasé declaratiotiss C extends S{L £ M.
Theself parameter is the transl_atlon of the_spemal \_/arlatheS . A class declaratioh. may include a set of nested class declara-
and always refers to the master instance object, the instance objec¥

that created the other instance objects that collectively represent ionsL, a list of fieldsF, and a set of methodd. Fields are in a
Jx object ! yrep Jist since the order of the fields is important for field initialization.

There are two forms of class declarationin theTCT, a class dec-
5.3 Translating fields laration'sextends clause cannot mention a dependent class, but it
may refer to theype schemahis, which is used to name the en-
closing class into which the class declaration is inherited. During
class lookupThis is replaced with the name of the enclosing class,
Rroducing a class declaration with artends clause of the form

A field declaration in a Jx classis translated into a field dec-
laration inC’s instance class. Getter and setter methods are also
produced for any non-private fields, which allows the method dis-
patch mechanism to be used to access the fields. Field accesses i

- extends T.
Jx code are translated into calls to the getter and setter methods. TypesT are either top-level class@ qualified typesT.C, de-
5.4 Translating packages pendent classeg.class, or prefix typesP [T : PC], whereP de-

notes a non-dependent class name. A type may depend on an ac-
cess path expressignthe dependent clagsclass is the run-time
class of the object referred to by access gatfo be a well-formed

. . . ) afype, p must be afinal access path; ip were mutable, the class
tion about the package at runtime. For a given packagreepack of the object it refers to could change at run time, leading to an

age clasdor P provides type information abo@tto resolv_e prefix unsoundness. A prefix tyde[T : PC] is the innermost enclosing
types, analogous to a class class. The package class is able to pro-

! ! H
vide information about what packa@enherits from, the package ClassT® of T such thafl” is a subtype oP andT is a subtype of

. "N . ; T'.C (and thus ofP.C). For the prefix type to be well-formeélC
that contain®, packages nested insi#ieand classes contained in - T be a d q | h i
the package. must exist and” must be a dependent class or another prefix type.

This definition of prefix type differs from the description given in

Since a package class needs to know aboutall classes in the pac Section 3; the change simplifies the semantics. Although the prefix

age, care must be taken to ensure that the classes in a given pacl&- pe syntax can name only the immediately enclosing clas, of
age can be compiled separately while guaranteeing that the packag urther enclosing classes can be named by prefixing the prefix type
class contains correct information. Correctness can be achieved by(e 9.A[AB[x.class:AB.C] :AB])
generating the package class every time a class within the pack- .Filéldsl.: méy decléré&iﬁai or.non-final All field declara-
age is compiled, under the assumption that all previously compiled tions include an initializer expression. The Syntax for methdds

classes within the package are available at that time. Removal of. ~ =~ .
is similar to that of Java.

a class from a package requires the package class to be regener- X S .
Expression® are similar to Java expressions of the same form.

ated. The reflection mechanism of Java may provide a more flex- Access patho are either field accessasf or valuesv, which

ible mechanism to ensure the correctness of information provided . . .
include base valueb and variablesx. Base valued are either
by package classes.

memory locationgp of type P or null. Locations are not valid
surface syntax, although they appear during evaluation. All vari-
6. SIMPLE LANGUAGE MODEL ablesy, including formal parameters and the special variahtes,

To explore the soundness of type checking with nested inheri- arefinal and are initialized at their declaration. The declaration
tance, we developed a simple Java-like language that demonstratesinal T x= €1; & initializesx to e1, then evaluates,.
the core features of nested inheritance with dependent classes. For Fields and methods are accessed only through final access paths
simplicity, many features of the full Jx language are absent. In par- p. Field assignments may optionally be annotated with the keyword
ticular, the language presented here includes nested classes but ndtinal, permitting assignment tbinal fields when initializing an
packages. A package can be modeled as a class in which all classesbject. Thesefinal assignments are not allowed in the surface
in the package are nested. syntax. Methods dispatch to the method body in the most specific

The language is based on Featherweight Java (FJ) [16], butsuperclass of the receiver, as described in Section 4.2. A method
includes a number of additional features found in the full Java implemented by a superclass®fmay be invoked with the expres-
language—notably, a heap asdper calls—needed to model im-  sionv.superp.m(V). In the surface syntax; must bethis, butv
portant features of nested inheritance. We include a heap in ordercan take on arbitrary values during evaluation as substitutions oc-

This section describes a design for translating package inheri-
tance in Jx. This design is not yet implemented.
Packages, like classes, require a means to access type inform



Syntax:
= (L€
;= class C extends S{L F M}

| class C extends T {L F M}
S :=C | SC | This | P[S:PC]

programs Pr
class declarations L

type schemas

types T :=C | T.C | pclass
| PIT:PC]
simple nested classesP,Q ::=C | PC
field declarations F =[final] T f=e
method declaraions M =T m(T X) {e}
access paths p i=v]| pf
base values b :=¢(p | null
values v i=b|Xx
expressions e =p
| £inal T x=¢y; &
| P-f =[tina1) €1; &
| p-m(V)
| v.superp.m(V)
| new T asx{f =&}
objects o =P{f=1¢p}
typingenvironments [ =0 | [,x:T

Evaluation contexts:

evaluation contexts E

.m(b)
new TE as X{F: g}
=TEC

| PITE:PC]

| E.class
=null.f

| final TEnull]x=e1; &

| null.f =b;e

| null.m(B)

| null.superp.m(b)

| new TE[null] as X {Fz g}

type eval contexts TE

null eval contexts N

Type interpretation:
exactclasg/p.class) =P
exactclasgP[T:PC]) = prefix P, exactclasgT),
exactclasgT),P.C)

runtimeclasgC) =C
runtimeclasgT.C) = runtimeclasgT).C
runtimeclasg/p.class) =P
runtimeclasgPL[T :P.C]) = prefix P, runtimeclasgT),

runtimeclasgT),P.C)

prefixP, Py, P’.C,PC) = P'
prefix(P,Po, T, P.C) = prefix P, Py, (0,P, T),PC)
(T # P'.CforanyP)

Class lookup:
classefl, To,P) = Ls
TCT(C) =Cext P {LF M}

— —— (CT-OUTER)
CT(I,To,C) =C ext P {LseL{Tp/This} F M}
Cext Ts {LF M} € classe§,T,T)
classefl, To, Ts) = Lg
é_7 0 S) S (CT'NEST)

CT(I,To,T.C) =C ext Ts {Lse L{To/This} F M}

exactclas§T) =P
classe§, To,P) =L
CT(I',To,T) = _ext P{Le0}

P[T:PC] ¢ dom(exactclasy classe§, To,P) =L

(CT-RUNTIME)

— CT-PR
CT(I', To,P[T:PC]) = _ext P {Le 0} ( Z
p.class ¢ dom(exactclasg
[ pfinal P
I To,P) =L
classefl’, To,P) (CT-0E9

CT(I,To, p.class) = _ext P {Le0}

Member class inheritance:

Liely = U L1(C)eL2(C)
Cedom(L;ULy)

[(G) = Li if Lj =C; ext'ﬁ{til_:]mi}
"7 ) absent otherwise

Cext Ty {Ej_ |E;|_ Ml} eCextT {Eg ﬁz Mz} =
Cext T2 {LyeL> = My}

Cext Ty {L1 F M;} eabsent=C ext Ty {L; 00}

absen®C ext Ty {Ez ﬁz Mz} =Cext T {Ez ﬁz Mg}

Final access paths:

7'_ Pwi F-Loc
F/p final P ( )
M=T wf (F-NULL)
[Fnull final T
x:Tel
- (F-VAR)
[FXfinal T
M-pfinal T ftypdl, T, fi) = final T (F-cET)

I+ p.fi final Ti{p/this}

M-pfinal T exactclas§T) =P exactclas§T') =P
- pfinal T/

(F-RUNTIME)

Figure 10: Syntax and class lookup functions



Superclasses:

CT(,T,T)=Cext Ts {LF M}
supell, T) =Ts

Nested classes:
classefl, To,0bject) =0

CT(F,To,T)=Cext T' {LF M}
classefl,To,T) =L

Fields:

fieldy, To,0bject) = []
CT(F,To,T) =Cext Ts {LF M}
(M1, T)=T
fieldg, To, T') = F
fieldg,To, T) =F',F

fieldgl,T,T) = [final] T f =&
ftype(l, T, fi) = [final] Ti
fieldgI,T,T) = [final] T f =&
finit(l, T, fj) =g

fieldgl,T,T) = [final] T f =&
fnames¢l", T) =T

Methods:

CT(F,To,T) =Cext Ts {LF M}
TmTX) {eecM
methodl, To, T,m) = T, m(T %) {e}

CT(F,To,T) =Cext Ts {LF M}
TmTx {el¢gM
(MTo,T)=T
methodl™, To, T/,m) = M
methodl", To, T,m) =M

method®, To, T,m) = T, m(T ) {e}
mbodyTo, T,m) = (X, €)

methodl™, To, T,m) = T, m(T X) {e}
mtypél, To,T.m) = (X:T) = T;

Operational semantics:

runtimeclasgT) =P
(H,final T x=b; €) — (H,e{b/x})

H(¢p) =P {f =b}
(H,¢p.fi) — (H,by)

H(tp) =P {T =D}
H =H[lp:=P{fy=by,....fi=0 .. fn=bn}]

<H7€P'fi :[final] b|/' e> I <H/7e>

mbodyP,P,m) = (X, e)
(H,¢p.m(b)) — (H,e{lp/this,b/X})
(0.PQ=Q

mbodyP,Q’,m) = (X,e)
(H,¢p.superq.m(b)) — (H,e{¢p/this,b/x})

(R-SUPER

runtimeclasgT) =
fname¢0, P) = f’
fct
tp ¢ dom(H)
H' =H[fp = P {f’ =null}]
€ =e{lp/x}if fiecf
e =finit(0,P, fi){¢p/this} if fie /T
& =lp.f' =tina1 €; lp
(Hnew T as x {f =&}) — (H',¢)

P

(R-NEW)

(H,e) — (H'.€)
(H,E[e]) — (H".E[€])

(R-cong)

(H,E[N]) — (H,null)

(R-NULL)
Dispatch ordering:

ord(r, T)=T
(rT,T|) = Ti+1

ord(l",0bject) = [Object]

ord(l",T.C) = ord(I", T).C, ord(I", supefI", T.C))
ord(I',T) =T,ord(I",supel,T))

whereT # Object and
T #£T/.CforanyT’

ord(,T).Cis the list of T’.C such thafl’ € ord(I", T) and
rET.Cwf

Figure 11: Member lookup functions and operational semantics

(R-LET)

(R-GET)

(R-sET)

(R-CALL)



cur. To simplify dispatch, auper call is marked with the name of
the class lexicallyP containing the call.

Allocation is performed with theew operator. The calculus does
not include constructors. Instead, thew operator has amline
constructor bodyhat may initialize zero or more fields of the new
object. The field initializers may refer to the new object through
the variablex. Fields not assigned in the inline constructor body are
initialized with their default initializers. Field initialization order is
left undefined; fields are initialized toull by default. Access to
an uninitialized field is treated asmall dereference. A heaHd
maps locationgp to objectso, which are simple records annotated
with their class type.

For any ternt, valuev, and variablex we writet{v/x} for the
capture-free substitution effor x int. As is standard practice.-
equivalent terms are identified. We wrig/(t) for the set of free
variables irt.

6.2 Class lookup

Classes are defined in a fixed top-level class takl& that maps
all top-level class nameS to class declarations. We extend the
top-level class tabl@CT to a functionCT, shown in Figure 10.

fine L{To/This} asC ext S{To/This} {L F M}, and we define
S{To/This} as:
C{To/This} =C
SC{To/This} = S{Tp/This}.C
This{To/This} =Tp
P[S:PC]{To/This} = prefix P,P’,P’,PC)
whereS{Ty/This} = P
P[S:PCI{To/This} = P[T:PC]
whereS{Tp/This} =T # P/
for any P’
The functionprefixis defined in Figure 10 and is used to ensure the
type produced by the substitution is well-formed.

The rule CTRUNTIME defines class lookup for types whose ex-
act run-time class can be determined statically. The partial function
exactclass defined in Figure 10, returns a simple class tipdfer
these typesexactclassis only defined only for dependent classes

and prefix types containing access paths of the féprlass.
Since these types are not valid surface syntaxRURTIME is not

CT returns class declarations not only for top-level class names, used when type-checking the program, but is needed to prove the
but for arbitrary types. Member lookup and subtyping are defined type system sound.

usingCT.

In addition to the type to lookugCT has two more parameters.
Because the language has dependent classeSTthenction takes
an environmenk that maps variables to typeS.s a finiteordered
list of x: T pairs in the order in which they came into scope. To be
well-formed, an environmerit may contain at most one pait T
for a givenx.

In addition to returning a class declaration for a ty@4d, also
interprets theextends clause of the class declaration, replacing
any occurrences dfhis with the actual enclosing class. This type
is passed as the second argumer@To Thus,CT(I", To, T) returns
the interpreted class declaration fbrin an environmenf” where
To is substituted into thextends clause of member classes of the
class declaration. To save space, we w@text T {L F M} to
representlass C extends T {L F M}.

The rule CTPREdefines class lookup for prefix typB$T : P.C]
whose run-time class isot statically known. An anonymous class
declaration whose superclas$iss returned.

Similarly, the rule CTpEP defines class lookup for dependent
classesp.class whose run-time class isot statically known by
returning an anonymous class declaration whose superclass is the
declared type op.

The judgment” + p final T, defined in Figure 10, is used to
check that an access path has tifpand is immutable. The rules
for - pfinal T and forCT(I", Tp, T) are mutually recursive (via
the definitionftype defined in Figure 11). For a dependent class
p.class to be well-formed, the static type gf must be a sim-
ple typeP; this restriction is sufficient to ensure the definition of
CT for dependent classes is well-founded. As in [29], we wish to
ensure that no type information is lost when typing a final access

Classes inherit member classes of the base class into the bodypath so that we can tightly bounglclass. Consequently, there

of the derived class. The skt e Ly, defined in Figure 10, merges
the class bodies of identically named classekjrandLy, creat-

is no subsumption rule that can be used to priovep final T.
Rules Froc and FvAR bound the types of locations and local

ing class declarations for implicit classes when needed. Classesvariables, respectively. Eoc requires that the type of the loca-
in Ly—classes inherited from the base class—are overridden by tion ¢p be well-formed according to the rules in Figure 13. Rule
classes in.,—nested classes of the derived class. Fields and meth- F-NULL states that theull value may have any type. Rule&ET

ods of classes defined in a base classateopied when the nested

uses thetypefunction to retrieve the type of the field. The target

class is inherited into the subclass; they can be found by the mem-of a field access in a final access path mustheal. Finally, the

ber lookup functions defined in Figure 11.

The functionclasse$l”, Ty, T) defined in Figure 11 returns the set
of member classes afwith T substituted folhis in theextends
clause of the member classes.

The rules CTouTER and CTNEST define theCT function for
top-level classe€ and nested classdsC, respectively, using the
top-level class tabl@CT. The three rules CRUNTIME, CT-PRE,

rule F-RUNTIME permits two types with the same run-time class (if
statically known) to be considered to have the same type.

6.3 Method and field lookup

Method and field lookup functions are defined in Figure 11. The
functions are defined using the linearization of superclasses de-
scribed informally in Section 3. The orderingtd(l", T), is de-

and CTDEP return class declarations for dependent classes andfined so that classes thatoverrides occur befor&’s declared su-

prefix types. In these rules, tH@T function returns for typer
ananonymous class declaratiovhose superclass is a simple class
type P boundingT.3 Member classes are copied down into the

perclasssupefl",T). The function is used to iterate through the
superclasses to locate the most-specific method or field definition.
In Figure 11, the functiorieldgI", Tp, T) returns all fields de-

anonymous class declaration as with top-level and nested classes. clared in classly or superclasses dfy, iterating through super-

In each rule, the typ@& is substituted foThis in the extends
clauses of nested classes. FoeC ext S {L F M}, we de-

classes ofTy using the function, beginning witii. Auxiliary
functions ftype finit, and fnamesare defined fronfields to re-
turn the type of a given field, the initializer of a field, and the

3Anonymous class declarations should not be confused with Javaset of all field names for a given class, respectively. The func-

anonymous classes.

tion methodr", To, T, m) returns the most-specific method declara-
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Figure 12: Subtyping [ p.class wf (WF-DEF)

r-PCwf IETwf is-exactT) THT<PC
tion for methodm, iterating through the superclassesTgf begin- FEPLIT:PC] Wi (WF-PRE)
ning with T. Functionsmbodyandmtypereturn the method body
and method type, respectively, for a method.

. . H _ _ T/
6.4 Operational semantics is-exactT) {false f T=CvT=T'C

The operational semantics of the language are given in Figure 11. true otherwise
The semantics are defined using a reduction relatienthat maps
a configuration of a hedp) and expressioato a new configuration.
A heapH is a function from memory locatiorés to objectsP {f = Figure 13: Type well-formedness
fp'}. The notation(H,e) — (H’,€) means that expressi@and
heapH step to expressiod and heagH’. The initial configuration . . i
for program(TCT,e) is (0, €). Final configurations are of the form lationships for dependent classes and prefix types are covered by

(H, fp) or (H,null). <-EXTENDS. Rule<-NESTsays that a nested claSsn T is a sub-

The reduction rules are mostly straightforward. cR:L and class of the clasS in T’ that it overrides. Finally, rulec-RUNTIME
R-sUPERuUse thembodyfunction defined in Figure 10 to locate ~ States that two types are subtypes of each other if their run-time
the most specific implementation ot Recall thatsuper calls are classes are equal.

annotated with the name of lexically enclosing class containing the
call. R-supeRuses the function, defined in Figure 11 to start the
search for the method body at the next-most specific method afterSince types may depend on variables, we define type well-
the lexically enclosing class. formedness in Figure 13 with respect to an environnignirit-

For anew T as X expression, R¥ew allocates an object of the tenT =T wf. A non-dependent type is well-formed if a class
run-time clas® of type T. The rule initializes all fields of the new  declaration for it can be located through th€T. A dependent
object tonull and then steps to a sequence of field assignments classp.class is well-formed if p is final and has a simple non-
to initialize the expression, and finally evaluates to the location of dependent class tyge A prefix typeP[T :P.C] is well-formed if
the newly allocated object. The field assignments are annotatedits subterms are well-formed andTfis anexact typeand is also a
with the keywordfinal to indicate that it is permitted to assign  subtype ofC. The last requirement ensures the run-time class of
to final fields. Since final assignments are not permitted in the the type can be determined.
surface syntaxtinal fields may only be assigned once. The field A type isexactif it is a dependent class or a prefix type. The
initializers & appearing explicitly in the.ew expression are evalu-  subtyping rules ensure that no type can be proved a subtype of an
ated with the new location substituted forThe other fields of the ~ exact type. This restriction ensures that a variable of fypeass

Type well-formedness

object are initialized using the default initializegswith the new can be assigned only values with the same run-time class as the ob-

location substituted fothis. ject referred to byp. The restriction does not limit expressiveness
The run-time class ofT is computed using the function  since non-exact prefix types can be desugared to either exact prefix

runtimeclass defined in Figure 10. For prefix typ&{T’: PCI, types or to non-prefix types.

runtimeclassuses therefixfunction to compute the run-time class .

of the prefix type by iterating through the superclasse¥’aintil Typing

a class overriding?.C is found; the container of this class is the The typing rules are shown in Figure 14. The typing context con-

run-time class of the prefix type. sists of an environmeit. The typing judgmenit -e: T is used to
Order of evaluation is captured by an evaluation contéxt  type-check expressions.

(an expression with a holg]) and the congruence rule BeNG. Rules TNuULL and TvAR are standard. The rule doc allows

The rule RNULL propagates a dereference ofiall pointer out a location of typeP to be used as a member of any typevhere

through the evaluation contexts, simulating a JawalPointer- runtimeclasgT) = P. This rule helps to ensure types are preserved

Exception. across the evaluation ofrew expression.

. . The rule TLET type-checks a local variable initialization expres-
6.5 Static semantics sion. The declared type must be well-formed in the environment
The static semantics of the language are defined by rules for sub-I". The expressio# following the declaration is type-checked with
typing, type well-formedness, typing, and conformance. the new variable in scope. The typee&fmust be well-formed in
theoriginal environment to ensure that its type does not depend on
the new variable, which is not in scope outsidezof
The subtyping relation is the smallest reflexive, transitive relation  Rules TGET and TSET use theftype function to retrieve the
consistent with the rules in Figure 12. RWeEXTENDS says that type of the field. The target of a field access or assignment must be
a class is a subtype of its declared superclass. The subtyping re-afinal path, permitting substitution to be performed on the field

Subtyping
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Figure 14: Static semantics

type: occurrences ofhis in the field type are replaced with the
actual targep. Rule T-SETpermits assignment thinal fields, but
only for assignments annotated withnal. This enable€inal
fields to be initialized, but not assigned to arbitrarily.

Rules T€ALL and TsuPERare used to check calls. The func-
tion mtypereturns the method'’s type. The method type may depend
on this or on its parameters, which are considered part of the
method type. The receiver must bénal to permit substitution
for argument and return types dependentans. The arguments
are also substituted into the type.

Rule TNEW is used to check aew expression. The fields used
in the inline constructor body must be declared in the class being
allocated and the initializers must have the appropriate types. Since

FLokine FeT
(L,e) ok

(OK-PROGRAM)

FLokinPC
FF okinPC
FMokinPC

classe$d, S{P/This},S{P/This}) =Ls

C e dom(L) AC € dom(Ls)

= L(C) in PC overrides class cﬁ{P/This})
F M in PC overrides method d8{P/This}
this:PF S{this.class/This} wf
—is-exact{S{this.class/This})

the initializers usex to refer to the newly allocated objeatis sub-
stituted forthis in the field types.

Rule TDEP allows any final access path with a simple nested
class type to take on a dependent type. Finally, rule & the
usual subsumption rule for subtyping.

Declarations
To initiate type-checking, declarations are checked as shown in Fig-

FCext S{LF M} okinP
(OK-CLASS)

supef{this: Ps},this.class.C) =Ts
classefd, S{P/This},S{P/This}) =Ls

C € dom(L) AC € dom(Ls)

=t L(C) in PC overrides class cﬁ{P/This})
F M in PC overrides method d®s.C
this:P+F S{this.class/This} <Ts

ure 15. The program is checked with rul&K @ROGRAM, which
checks every class in tHeCT and type-checks the “main” expres-
sionein an empty environment.

Rule Ox-cLAss type-checks a class declaration of the form
Cext S{L = M}, nested within a clasB, whereP is possibly
€ (i.e.,C is top-level). Type-checking recurses on all member dec-
larations including nested classes. The rule also checks member
classes and methods for conformance with the corresponding dec-
larations in their superclass. To ensure no other type can be proved
a subtype of a dependent class or of a prefix type, it is required
that a class cannot be declared to extend the type sclikigaor
any prefix ofThis. This requirement is enforced by substituting
this.class for the schem&his in the superclasS; and check-
ing that this type is well-formed and not an exact type.

Rule Ov-cLAss checks that a class declaration conforms
to any class declarations it overrides. When overriding a
class with superclas$s, it is required that the new superclass

Cext S{LF M} in P overrides class d?s
(Ov-cLASYS)

this:PFTwf this:Pke:T
b [final] T f=eokinP

(OK-FIELD)

this:PXy:Tg,...,X_1:Ti_1+ T wf
this:PX:T F To wf
this:PX:Tke: Ty
FTom(T %) {e} okinP

(OK-METHOD)

mtyp&0,P.Ps,m) = (X :T') — T}
=T/ =T/} AT, =To{X/%}

= - (Ov-METHOD)
PF To m(T X) {e} overrides method dfs

Figure 15: Checking declarations



S{this.class/This} be a subtype ofs in the typing environment
this:P. This restriction differentiates nested class overriding from
arbitrary multiple inheritance.

Rule Ok-FIELD states that in the body of clags a field dec-
laration of the form[final] T f = e type-checks if the typd
is well-formed and the initializee type-checks in an environment
wherethis has typeP. For simplicity, we assume a field naméd

Definition 6.6 A program Pr = (TCT,e) is well-formed if +
TCTok and0t e: T for someT such tha® - T wf.

Theorem 6.7 (Soundness) Given a well-formed progrdn =
(TCT,e), if the configuration(0,e) is well-formed and-e: T, and
if (H’,€) is a normal form such thd®,e) —* (H’,€), then€ is
either a locatiorfp € dom(H’) ornull and-¢€ : T.

is declared at most once in the program, and we assume all methods

and nested classes are uniquely named up to overriding.

Rule Ok-METHOD checks that each parameter typdas well-
formed in an environment that includes onlyis and the param-
eters to the left offi. The method body must have the same type
as the declared return type. As in Java, method types are invariant
Ov-METHOD enforces this requirement.

6.6 Soundness

Our soundness proof is structurally similar to the proof of sound-
ness for Featherweight Java (FJ) [16]. The proof uses the standar

technique of proving subject reduction and progress lemmas [37]. 2

The key lemmas are stated here. The complete proof is available in
a technical report [26].

Subject reduction

Because expressions in our language are evaluated in a heap,
state the subject reduction lemma, we first define a well-typedness
condition for heaps and for configuratio(is, e).

Definition 6.1 (Well-typed heaps) A heal is well-typedif for
any memory locatioip € dom(H),

o H(tp) =P {f=10p},

o - ftypgO,P,f) =T,

e F/p:T{lp/this}, and
e /p Cdom(H)

Definition 6.2 (Well-formed configurations) A configuration
(H,e) is well-formedif H is well-typed and for any locatiofip
free ine, ¢p € dom(H).

The subject reduction lemma states that a step taken in the eval-

uation of a well-formed configuration results in a well-formed con-
figuration.

Lemma 6.3 (Subject reduction) Supposee: T, (H,e) is well-
formed, andH,e) — (H’,€). Then € :T and(H’,€) is well-
formed.

Progress

The progress lemma states that for any well-formed configuration
(H,e), eithereis a base valuép ornull, or (H,€e) can make a step
according to the operational semantics.

Lemma 6.4 (Progress) Ift-e:T, =T wf, (H,e) is well-formed,
then eithere = b or there is a configuratiogH’,€) such that
(H,e) — (H',¢€).

Soundness
Finally, we define the normal form of a configuration, define well-
formedness for programs, and state the soundness theorem.

Definition 6.5 (Normal forms) A configuratiotH, €) is in normal
formif there is no(H’, &) such thatH,e) — (H’,€).

7. RELATED WORK

Over the past decade a number of mechanisms have been pro-
posed to provide object-oriented languages with additional exten-
sibility. Nested inheritance uses ideas from many of these other
mechanisms to create a flexible and largely transparent mechanism
for code reuse.

Virtual classes

cCested inheritance is related to virtual types and virtual classes.

irtual types were originally developed for the language Beta [21,
2], primarily as a mechanism for generic programming rather than
for extensibility. Later work proposed virtual types as a means of
providing genericity in Java [35].

Nested classes in Jx are similar, but not identical, to virtual
classes. Unlike virtual classes, nested classes in Jx are attributes

Q¢ their enclosing class, not attributesinftancef their enclos-

ing class. Suppose classhas a nested clagsand thatal anda?2
are references to instances of possibly distinct subclasgeSoe
virtual classes1.B anda2.B are distinct classes. In contrast, the
Jx typesal.class.B anda2.class.B may be considered equiv-
alent if it can be proved, either statically or at run-time, ttatand

a2 refer to instances of the same class.

Virtual types are not statically safe because they permit method
parameter types to change covariantly with subtyping, rather than
contravariantly. Beta and other languages with virtual types in-
sert run-time checks when a method invocation cannot be stati-
cally proved sound. Dependent classes in Jx provide the expressive
power of covariant method parameter types without introducing un-
soundness. Recent work on type-safe variants of virtual types has
limited method parameter types to be invariant [36] and sl
types[4] as discussed below.

Nested inheritance supports a form of virtual superclasses;
nested classes may extend other nested classes referretitodyy
providing mixin-like functionality. The language Beta does not
support virtual superclasses, but gbeta [8] does.

As discussed in Section 3, nested inheritance does not support
generic types. A nested class may only be declared a subtype of
another type (via the classstends clause), noequalto another
type. Generic types may be used to provide genericity, which is
already supported in Java through parameterized types. To ensure
inheritance relationships can be determined statically, a virtual type
in Beta may be inherited from only if it nal bound Since nested
classes in Jx argtatic, Jx does not permit inheritance from de-
pendent classes, ensuring a static inheritance hierarchy.

Igarashi and Pierce [15] model the semantics of virtual types and
several variants in a typed lambda-calculus with subtyping and de-
pendent types.

The work most closely related to nested inheritance is Oder-
sky et al.'s language Scala [28, 39], which supports scalable ex-
tensibility through a statically safe virtual type mechanism and
path-dependent types similar to Jx’s dependent classes. However,
Scala’s path dependent typetype is a singleton type containing
only the value named by access pathour p.class is not a sin-
gleton:new x.class(...), forinstance, creates a new object of type
x.class distinct from the object referred to by This difference



gives Jx more flexibility, while preserving type soundness. Scala Other nested types
has no analogue to prefix types.

Scala permits extensions to be composed through mixins. Jx sup-
ports mixin-like functionality via virtual superclasses. With nested
inheritance, several mixins can be applied at once to a collection
of nested classes by overriding the base class (or base package
of their container. In contrast, Scala requires the programmer to
explicitly name the superclass of each individual mixin when it is
applied.

Nested classes originated with Simula [7].

Igarashi and Pierce [17] present a formalization of Java’s inner
classes, using Featherweight Java [16]. An instance of a Java inner
lass holds a reference to its enclosing instance. If inner classes
re permitted in Jx, a translation similar to Igarashi and Pierce’s
can be applied, where if inner cla@$as an immediately enclosing
instance of clasB, then the translation af has a final field of type
P[this.class].

Odersky and Zenger [30] propose nested types, which com-
bine the abstraction properties of ML-style modules with support,
through encoding, for object-oriented constructs like virtual types,
Ernst [9] introduces the ternfamily polymorphisnto describe self types, and covariant families of classes.
polymorphism that allows reuse of groups of mutually dependent
classes, that is &mily of classes. The basic idea is to use an ob- Self types and matching
ject as a repository for a family of classes. Virtual classes of the Bruce et al. [5, 3] introducenatchingas an altemnative to subtyp-
same object are considered part of the same family. The language ~ " e : .

] . ing in an object oriented language. With matching, sed type
gbeta [8], as well as Scala [28], described above, provides fam- or MyT can be used in a method sianature to represent the
ily polymorphism using a dependent type system that prevents the > 5 P : 0d Sig 0 Tep

) ) -~ . . . run-time class of the method’s receiver. To permjiType to be
confusion of classes from different families. Nested inheritance is a used for method parameters, type systems Wjthype decouple
limited form of family polymorphism. In the original formulation, P  Lype Sy pe b

. . - . I . subtyping and subclassing. In PolyTOIL and LOOM, a subclass
eachobjectdefines a distinct family consisting of its nested classes. ; . ;

. ; . ) . -~ '_matchests base class but is not a subtype. Although there is no

With nested inheritance, since nested classes are associated with an

enclosing class rather than with an instance of the enclosing class,fxﬁ::cna?%t'?n gfemlj"i:f;'enngcén ?:err:yhpeer;%j\%né tsk}emirlzlre;‘ffgétsqrbr;e
eachclassdefines a distinct family. Thus, nested inheritance per- yping ype €q 9 :

mits only a finite number of families. However, consider the case p-class construct provides similar functionality ¥yType, but is
of a classt with nested clasB and references1 anda2 of typeA. more flexible since it permitshis . class to escape the body of its
If a1.class anda2.class cannot be shown statically to have the class by assigninghis . class into another variable or returning
same type, theal.class.B anda2.class.B may be considered a value of that type from a method.
to be of distinct families, although at run-time they may be of the
same family. Jx allows objects to be passed between the two fam-
ilies by castingal.class to a2.class or vice versa. This added A mixin[2, 11], also known as aabstract subclasss a class pa-
flexibility enables greater reuse. Moreover, using prefix types, a rameterized on its superclass. Mixins are able to provide uniform
family need not be identified solely be a single object. In gbeta, an extensions, such as adding new fields or methods, to a large num-
explicit representative of the family must be passed around. It lacks ber classes. Recent work has extended Java with mixin function-
an analogy to prefix types, which enable a member of a family to ality [23, 1]. Because nested inheritance as described here has no
unambiguously identify that family. type parametricity, it cannot provide a mixin that can be applied
Delegation layers [31] use virtual classes and delegation to pro- to many different, unrelated classes, Nested inheritance does, how-
vide family polymorphism, solving many of the problems of mixin ~ ever, provides mixin-like functionality by allowing the superclass
layers. With normal inheritance and virtual classes, when a method of an existing base class to be changed or fields and methods to be
is not implemented by a class, the call is dispatched to the super-added by overriding the class’s superclass through extension of the
class. With delegation, the superclass view of an object may be superclass’s container. Additionally, nested inheritance allows the
implemented by anothesbject Methods are dispatched through  implicit subclasses of the new base class to be instantiated without
a chain of delegate objects rather than through the class hierarchywriting any additional code. Mixins have no analogous mechanism.
Delegation layers provide much of the same power as nested in- Mixin layers [33] are a generalization of mixins to multiple
heritance. Since delegates are associated with objects at run-timeclasses. A mixin layer is a design pattern for implementing a group
rather than at compile-time, delegation allows objects to be com- Of interrelated mixin classes and extending them while preserving
posed more flexibly than with mixins or with nested inheritance. their dependencies. Mixin layers do not provide family polymor-
However, no formal semantics has been given for delegation lay- phism. Delegation layers [31], described above, were designed to
ers, and because delegation layers rely on virtual classes, they ar@vercome this limitation through a new language mechanism.
not statically type-safe.

Family polymorphism

Mixins

Open classes

An open clasg6] is a class to which new methods can be added
without needing to edit the class directly, or recompile code that
Nested inheritance is similar to Ernst's higher-order hierar- depends on the class. Nested inheritance is also able to add new
chies [10]. Like nested inheritance, higher-order hierarchies sup- methods to a class without the need for recompilation of clients of

Higher-order hierarchies

port family polymorphism. Additionally, when a subclassover- the class, provided that the class is nested in a container that can
rides a nested clagf A2’s base class, the overriding class2.B be extended, and that clients of the class refer to it using depen-
inherits fromA . B. However, unlike nested inheritance, there is no denttypes. Nested inheritance provides additional extensibility that
subtyping relationship betwean B andA2.B. By ensuringA2.B open classes do not, such as the “virtual” behavior of constructors.

is a subtype ofi.B, nested inheritance permits more code reuse. An important difference is that open classeedifyexisting class
Like nested inheritance, the inheritance hierarchy can be modified hierarchies. The original hierarchy and the modified hierarchy can-
by overriding the superclass of a nested class. not coexist within the same program. Nested inheritance creates a
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