Towards Semantics for Provenance Security

Stephen Chong
Harvard University
TaPP ‘09
Provenance security

- Some data are sensitive
 - Must ensure provenance does not reveal sensitive data
 - E.g., “John participated in medical study S” reveals “John has disease D”
Provenance security

- Some data are sensitive
 - Must ensure provenance does not reveal sensitive data
 - E.g., “John participated in medical study S” reveals “John has disease D”

- Some provenance is sensitive
 - Must ensure output does not reveal sensitive provenance
 - E.g., Workshop referee reports should not contain name/email of referee
 - Must ensure provenance does not reveal sensitive provenance
 - E.g., If student in Disciplinary Hearing, then student’s advisor must attend.
 “Prof. Smith participated as an Advisor” may reveal “John participated as respondent”
Provenance security

- Some data are sensitive
 - Must ensure provenance does not reveal sensitive data
 - E.g., “John participated in medical study S” reveals “John has disease D”
- Some provenance is sensitive
 - Must ensure output does not reveal sensitive provenance
 - E.g., Workshop referee reports should not contain name/email of referee
 - Must ensure provenance does not reveal sensitive provenance
 - E.g., If student in Disciplinary Hearing, then student’s advisor must attend. “Prof. Smith participated as an Advisor” may reveal “John participated as respondent”

- How do we know if we have security right?
 - Complex interaction between information security and provenance
 - Not well-understood
Semantics for provenance security

Goal:
- precise, useful, intuitive definitions of provenance security
- understand provenance security
- principles and mechanisms to apply in practice

This work: Formal definitions for provenance security
- public data does not reveal sensitive provenance
- public provenance does not reveal sensitive provenance
- public provenance does not reveal sensitive data
- (public data does not reveal sensitive data)
Semantics for provenance security

Goal:
- precise, useful, intuitive definitions of provenance security
- understand provenance security
- principles and mechanisms to apply in practice

This work: Formal definitions for provenance security
- public data does not reveal sensitive provenance
- public provenance does not reveal sensitive provenance
- public provenance does not reveal sensitive data
- (public data does not reveal sensitive data)
Language model

- Simple language-based model (based on Cheney, Acar, Ahmed [2008])
- Program c has input locations, produces single output

 $\langle l_1=v_1, \ldots, l_n=v_n ; c \rangle \Rightarrow v$

E.g.,

$\langle l_1=3, l_2=5, l_3=7 ; x = l_1; \text{if (x) then } l_2 \text{ else } l_3 \rangle \Rightarrow 5$
Language model

- Simple language-based model (based on Cheney, Acar, Ahmed [2008])
- Program c has input locations, produces single output
 - $\langle l_1=v_1, \ldots, l_n=v_n \ ; \ c \rangle \Rightarrow v$
- Provenance T describes execution
 - $\langle l_1=v_1, \ldots, l_n=v_n \ ; \ c \rangle \Rightarrow v \models T$

E.g.,
$\langle l_1=3, l_2=5, l_3=7 \ ; \ x = l_1; \text{if } (x) \text{ then } l_2 \text{ else } l_3 \rangle \Rightarrow 5$

$\models x=l_1; \text{cond}(x,\text{true},l_2)$
Language model

- Simple language-based model (based on Cheney, Acar, Ahmed [2008])
- Program c has input locations, produces single output
 - \(\langle l_1=\nu_1, \ldots, l_n=\nu_n ; \ c \rangle \Rightarrow \nu \)
- Provenance \(T \) describes execution
 - \(\langle l_1=\nu_1, \ldots, l_n=\nu_n ; \ c \rangle \Rightarrow \nu \ \vdash \ T \)
- Partial provenance: allow parts of \(T \) to be elided

E.g.,
\[\langle l_1=3, l_2=5, l_3=7 ; \ x = l_1; \text{if (x) then l}_2 \text{ else l}_3 \rangle \Rightarrow 5 \]
\[\vdash x=l_1; \text{cond}(x,\text{true},l_2) \]
Language model

- Simple language-based model (based on Cheney, Acar, Ahmed [2008])

- Program c has input locations, produces single output
 - $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$

- Provenance T describes execution
 - $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v \models T$

- Partial provenance: allow parts of T to be elided

E.g.,

$\langle l_1=3, l_2=5, l_3=7 \ ; \ x=l_1; \ \text{if} \ (x) \ \text{then} \ l_2 \ \text{else} \ l_3 \rangle \Rightarrow 5$

$\models x=l_1 ; \ \text{cond}(x, \text{true}, \star)$
Language model

- **Simple language-based model** (based on Cheney, Acar, Ahmed [2008])
- Program c has input locations, produces single output
 - $\langle l_1=v_1, \ldots, l_n=v_n \rangle; c \Rightarrow v$
- Provenance T describes execution
 - $\langle l_1=v_1, \ldots, l_n=v_n \rangle; c \Rightarrow v \models T$
- Partial provenance: allow parts of T to be elided

E.g.,

$\langle l_1=3, l_2=5, l_3=7 \rangle; x = l_1; \text{if} \ (x) \ \text{then} \ l_2 \ \text{else} \ l_3 \Rightarrow 5$

$\models x = l_1; \ cond(x,\star,\star)$
Language model

- Simple language-based model (based on Cheney, Acar, Ahmed [2008])
- Program c has input locations, produces single output
 - $\langle l_1=v_1, \ldots, l_n=v_n ; \; c \rangle \Rightarrow v$
- Provenance T describes execution
 - $\langle l_1=v_1, \ldots, l_n=v_n ; \; c \rangle \Rightarrow v \models T$
- Partial provenance: allow parts of T to be elided

E.g.,
$\langle l_1=3,l_2=5,l_3=7 \; ; \; x = l_1; \text{if (x) then } l_2 \text{ else } l_3 \rangle \Rightarrow 5$

$\models x=l_1 \; \star$
Security policies

- Each input location has security policy for data and provenance
 - e.g., $\Gamma(l_1) = LL$, $\Gamma(l_2) = LH$, $\Gamma(l_3) = HH$

Data security:
- H : High security (secret)
- L : Low security (public)

Provenance security:
- H : High provenance (secret)
- L : Low provenance (public)
Security policies

- Each input location has security policy for data and provenance
 - e.g., $\Gamma(l_1) = LL$ \hspace{1cm} $\Gamma(l_2) = LH$ \hspace{1cm} $\Gamma(l_3) = HH$

- User knows low security inputs, and is given output and partial provenance trace
 - User should not learn high security data
 - User should not learn which high provenance locations involved in computation

What (partial) provenance can we give to user?
First attempt

- We think T is secure for execution

 $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$ if:

 - $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v \models T$ and

- T does not contain any high provenance locations.
First attempt

We think T is secure for execution

\[\langle l_1=v_1, \ldots, l_n=v_n \; ; \; c \rangle \Rightarrow v \text{ if:} \]

1. $\langle l_1=v_1, \ldots, l_n=v_n \; ; \; c \rangle \Rightarrow v \models T$ and
2. T does not contain any high provenance locations.

E.g.,

\[\langle \ldots ; \; \text{if } (l_1) \; \text{then} \; l_2 + l_3 \; \text{else} \; l_4 + l_5 \rangle \Rightarrow 5 \models \text{cond}(l_1, \text{true}, l_2 + l_3) \]

\[\Gamma(l_1) = \text{HL} \]
\[\Gamma(l_2) = \text{HH} \]
\[\Gamma(l_3) = \text{HL} \]
\[\Gamma(l_4) = \text{HH} \]
\[\Gamma(l_5) = \text{HL} \]
First attempt

We think T is secure for execution

$$\langle l_1=v_1, \ldots, l_n=v_n ; c \rangle \Rightarrow v \text{ if:}$$

- $\langle l_1=v_1, \ldots, l_n=v_n ; c \rangle \Rightarrow v \equiv T$ and

- T does not contain any high provenance locations.

E.g.,

$$\langle \ldots ; \text{if } (l_1) \text{ then } l_2+l_3 \text{ else } l_4+l_5 \rangle \Rightarrow 5 \equiv \text{cond}(l_1, \text{true}, \star+l_3)$$

$$\Gamma(l_1) = \text{HL}$$
$$\Gamma(l_2) = \text{HH}$$
$$\Gamma(l_3) = \text{HL}$$
$$\Gamma(l_4) = \text{HH}$$
$$\Gamma(l_5) = \text{HL}$$

Provenance security

- T satisfies **provenance security** for execution
 \[\langle l_1=v_1, \ldots, l_n=v_n \rangle \implies v \text{ if:}\]
 - $\langle l_1=v_1, \ldots, l_n=v_n \rangle \implies v \equiv T$ and
 - for any high provenance l_i, there is an execution
 \[\langle l_1=w_1, \ldots, l_n=w_n \rangle \implies v\text{ such that}\]
 - if l_j is low security then $v_j = w_j$ and
 - $\langle l_1=w_1, \ldots, l_n=w_n \rangle \implies v \equiv T$ and
 - l_i involved in $\langle l_1=v_1, \ldots, l_n=v_n \rangle \implies v \iff$
 \[l_i \text{ not involved in } \langle l_1=w_1, \ldots, l_n=w_n \rangle \implies v\]
Provenance security

- T satisfies **provenance security** for execution

$$\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$$

if:

$$\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v \equiv T \text{ and}$$

for any high provenance l_i, there is an execution

$$\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v$$

such that

if l_j is low security then $v_j = w_j$

and

$$\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v \equiv T \text{ and}$$

l_i involved in \(\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v\) iff

l_i not involved in \(\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v\)

Looks the same
Provenance security

- T satisfies **provenance security** for execution
 $$\langle l_1=v_1, \ldots, l_n=v_n; \ c \rangle \Rightarrow v$$ if:
 - $$\langle l_1=v_1, \ldots, l_n=v_n; \ c \rangle \Rightarrow v \models T$$ and
 - for any high provenance l_i, there is an execution
 $$\langle l_1=w_1, \ldots, l_n=w_n; \ c \rangle \Rightarrow v$$ such that
 - if l_j is low security then $v_j = w_j$ and
 - $$\langle l_1=w_1, \ldots, l_n=w_n; \ c \rangle \Rightarrow v \models T$$ and
 - l_i involved in $$\langle l_1=v_1, \ldots, l_n=v_n; \ c \rangle \Rightarrow v$$ iff
 - l_i not involved in $$\langle l_1=w_1, \ldots, l_n=w_n; \ c \rangle \Rightarrow v$$

Neither output v nor provenance T reveal which high provenance input locations were used.

Provenance security

- T satisfies **provenance security** for execution

 $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$ if:

 - $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v \iff T$ and
 - for any high provenance l_i, there is an execution $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v$ such that

 - if l_i is low security then $v_i=w_i$ and
 - $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v \iff T$ and
 - l_i involved in $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$ iff

 l_i not involved in $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v$

E.g.,

$\langle \ldots ; \text{ if } (l_1) \text{ then } l_2 \ + l_3 \text{ else } l_4 \ + l_5 \rangle \Rightarrow 5 \iff$

$$\begin{align*}
\Gamma(l_1) &= \text{HL} \\
\Gamma(l_2) &= \text{HH} \\
\Gamma(l_3) &= \text{HL} \\
\Gamma(l_4) &= \text{HH} \\
\Gamma(l_5) &= \text{HL}
\end{align*}$$
Provenance security

- T satisfies **provenance security** for execution

 $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$ if:

 - $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v \neq T$ and

 for any high provenance l_i there is an execution

 $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v$ such that

 - if l_i is low security then $v_i = w_i$ and

 - $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v \neq T$ and

 - l_i involved in $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$ iff

 - l_i not involved in $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v$

E.g.,

$\langle \ldots ; \text{ if } (l_1) \text{ then } l_2 + l_3 \text{ else } l_4 + l_5 \rangle \Rightarrow 5 \neq \text{cond}(l_1, true, l_2 + l_3)$

$\Gamma(l_1) = HL$

$\Gamma(l_2) = HH \quad \Gamma(l_3) = HL$

$\Gamma(l_4) = HH \quad \Gamma(l_5) = HL$
T satisfies provenance security for execution
\[\langle l_1=v_1, \ldots, l_n=v_n ; c \rangle \Rightarrow v \text{ if:} \]
- \[\langle l_1=v_1, \ldots, l_n=v_n ; c \rangle \Rightarrow v = T \text{ and} \]
- for any high provenance \(l_i \), there is an execution
 \[\langle l_1=w_1, \ldots, l_n=w_n ; c \rangle \Rightarrow v \] such that
 - if \(l_i \) is low security then \(v_i = w_i \) and
 - \[\langle l_1=w_1, \ldots, l_n=w_n ; c \rangle \Rightarrow v = T \] and
 - \(l_i \) involved in \[\langle l_1=v_1, \ldots, l_n=v_n ; c \rangle \Rightarrow v \] iff
 \(l_i \) not involved in \[\langle l_1=w_1, \ldots, l_n=w_n ; c \rangle \Rightarrow v \]

E.g.,
\[\langle \ldots ; \text{ if } (l_1) \text{ then } l_2 + l_3 \text{ else } l_4 + l_5 \rangle \Rightarrow 5 \equiv \text{cond}(l_1, \text{true}, \star + l_3) \]
\[\Gamma(l_1) = \text{HL} \]
\[\Gamma(l_2) = \text{HH} \quad \Gamma(l_3) = \text{HL} \]
\[\Gamma(l_4) = \text{HH} \quad \Gamma(l_5) = \text{HL} \]

Provenance security

- T satisfies **provenance security** for execution

 $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$ if:

 - $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v \neq T$ and
 - for any high provenance l_i, there is an execution
 $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v$ such that

 - if l_i is low security then $v_i=w_i$ and
 - $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v = T$ and
 - l_i involved in $\langle l_1=v_1, \ldots, l_n=v_n ; \ c \rangle \Rightarrow v$ iff

 l_i not involved in $\langle l_1=w_1, \ldots, l_n=w_n ; \ c \rangle \Rightarrow v$

E.g.,

$\langle \ldots ; \text{if } (l_1) \text{ then } l_2 + l_3 \text{ else } l_4 + l_5 \rangle \Rightarrow 5 \neq \text{cond}(l_1, \text{true}, \star)$

\[
\Gamma(l_1) = \text{HL} \\
\Gamma(l_2) = \text{HH} \\
\Gamma(l_3) = \text{HL} \\
\Gamma(l_4) = \text{HH} \\
\Gamma(l_5) = \text{HL}
\]
Provenance security

- T satisfies **provenance security** for execution

 \[
 \langle l_1=v_1, \ldots, l_n=v_n \ ; \ c \rangle \Rightarrow v
 \]

 if:

 - $\langle l_1=v_1, \ldots, l_n=v_n \ ; \ c \rangle \Rightarrow v \neq T$ and
 - for any high provenance l_i there is an execution
 \[
 \langle l_1=w_1, \ldots, l_n=w_n \ ; \ c \rangle \Rightarrow v
 \]
 such that

 - if l_i is low security then $v_i=w_i$ and
 - $\langle l_1=w_1, \ldots, l_n=w_n \ ; \ c \rangle \Rightarrow v \neq T$ and
 - l_i involved in $\langle l_1=v_1, \ldots, l_n=v_n \ ; \ c \rangle \Rightarrow v$ iff

 - l_i not involved in $\langle l_1=w_1, \ldots, l_n=w_n \ ; \ c \rangle \Rightarrow v$

E.g.,

\[
\langle \ldots ; \text{ if } (l_1) \text{ then } l_2 + l_3 \text{ else } l_4 + l_5 \rangle \Rightarrow 5 \equiv \text{cond}(l_1, \star, \star)
\]

\[
\begin{align*}
\Gamma(l_1) &= \text{HL} \\
\Gamma(l_2) &= \text{HH} \\
\Gamma(l_3) &= \text{HL} \\
\Gamma(l_4) &= \text{HH} \\
\Gamma(l_5) &= \text{HL}
\end{align*}
\]
Conclusion

- Need to understand provenance security, and interactions with data security
- This work: Formal definitions for provenance security
 - public data does not reveal sensitive provenance
 - public provenance does not reveal sensitive provenance
 - public provenance does not reveal sensitive data
- Practical implications:
 - determining access control for provenance
 - consistency of security policies for data and provenance
- Future work:
 - Moving from the T towards the P of TaPP