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ABSTRACT 
Assembly programming is challenging, even for experts. Program 
synthesis, as an alternative to manual implementation, has the 
potential to enable both expert and non-expert users to generate 
programs in an automated fashion. However, current tools and 
techniques are unable to synthesize assembly programs larger than 
a few instructions. We present Assuage: ASsembly Synthesis Using 
A Guided Exploration, which is a parallel interactive assembly syn-
thesizer that engages the user as an active collaborator, enabling 
synthesis to scale beyond current limits. Using Assuage, users 
can provide two types of semantically meaningful hints that ex-
pedite synthesis and allow for exploration of multiple possibilities 
simultaneously. Assuage exposes information about the underly-
ing synthesis process using multiple representations to help users 
guide synthesis. We conducted a within-subjects study with twenty-
one participants working on assembly programming tasks. With 
Assuage, participants with a wide range of expertise were able to 
achieve signifcantly higher success rates, perceived less subjective 
workload, and preferred the usefulness and usability of Assuage 
over a state of the art synthesis tool. 
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• Human-centered computing → Interactive systems and tools; 
• Software and its engineering → Automatic programming. 
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1 INTRODUCTION 
Although most software is written in higher level languages, there 
is still a large body of mission critical software that must be written 
in assembly, and assembly language, by comparison, is difcult 
and tedious to write. People write assembly code in many situa-
tions: when developing low level, machine-dependent parts of an 
operating system, when working on resource-constrained embed-
ded platforms, when programming low-level device drivers, and 
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while optimzing code that requires specifc instructions that the 
compiler cannot produce. However, most programmers are neither 
professional assembly programmers nor familiar with the myriad 
assembly languages emerging with the end of Moore’s law [23]. 
Most programmers never write assembly programs. It takes time 
and efort for people to learn diferent assembly languages and 
then to debug programs written in them. Assuage is designed for 
users who are familiar with the high-level concepts of assembly lan-
guages, but do not know the syntax for a given assembly language 
or the details of what each instruction does. 

Assembly program synthesis has been proposed as an alternative 
to manual implementation [20, 28, 48]. The existing assembly syn-
thesis systems [25, 28] leverage CounterExample Guided Inductive 
Synthesis (CEGIS) [46], which is a technique that iteratively gener-
ates candidate programs, i.e., sequences of assembly instructions, 
and then checks whether they satisfy a given specifcation. If the 
candidate violates the specifcation, CEGIS provides a counterex-
ample demonstrating the violation. However, the major barrier to 
the adoption of assembly synthesis is the limitation of its scalability 
to unrestricted real-world problems; specifcally, the search space 
of possible programs is combinatorial in the number of machine 
states and exponential in the number of instructions. This limits 
the feasibility of assembly synthesis to sequences of only a few 
instructions [2, 48, 49]. Current strategies for exploiting parallelism 
to speed up the search in this domain are limited. 

Interactive synthesis techniques have been shown to improve 
synthesis scalability in other programming contexts [2, 10, 13, 21, 
32, 41, 44, 54, 55]. Though this is a promising direction, there are two 
major concerns when applying interactive synthesis to assembly 
programming: First, assembly programs are hard to understand and 
tedious to write, possibly impairing users’ ability to provide guid-
ance, especially when they are unfamiliar with the specifc assembly 
language being used. Second, for users to help guide the synthesis 
process, they need to understand details about the synthesis process 
as it unfolds [54]; however, relative to other synthesis methods, such 
as exhaustive enumeration, CEGIS has a complex structure, with 
candidates and counterexamples as intermediates. Moreover, for as-
sembly synthesis, these intermediates contain sophisticated syntax 
and semantic information that dramatically increases complexity. 

To address these concerns, we introduce Assuage (Figure 1), a 
novel interaction technique for CEGIS-based assembly synthesis 
that (1) allows users to provide multiple types of guidance during 
synthesis, (2) provides users with diferent representations of syn-
thesizer feedback, and (3) enables parallel synthesis to decrease the 
penalty for users whose guidance is, at times, counterproductive. 
Assuage supports two types of interventions, i.e., user guidance: (1) 
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constraints enable users to explicitly constrain the instructions and 
elements of the machine model that programs reference, and (2) 
decompositions, where the user can opt to accept a system-proposed 
decomposition of the original specifcation into a set of smaller 
specifcations that might be easier to solve. To help users gain more 
insight and provide better guidance, Assuage displays the on-going 
synthesis process with representations of synthesizer feedback, in-
cluding a synthesis candidate ranking list, frequency analysis of 
diferent instructions explored during synthesis, debug information, 
and satisfaction analysis about the correct and incorrect parts of a 
candidate’s behavior. Finally, in contrast to traditional synthesis, 
Assuage supports parallel synthesis, which spawns new synthe-
sis instances whenever users apply interventions, while allowing 
previous instances to continue executing. All these instances run 
simultaneously and users can choose to apply interventions to any 
of them. This allows users to try interventions that may not work, 
without penalty. This design encourages exploration in the presence 
of uncertainty. 

Though parallel synthesis should help users explore more in-
terventions, we were concerned that the complexity of tracking 
multiple instances would overwhelm users and negatively efect us-
ability. To better understand the efectiveness of Assuage’s features, 
we conducted a within-subjects user study with 21 participants with 
various levels of expertise. When interacting with all of Assuage’s 
features (including parallel synthesis), participants achieved a sig-
nifcantly higher success rate than when using a state-of-the-art 
non-parallel synthesis toolchain that provided only instruction 
constraints and synthesizer feedback. Furthermore, when using 
Assuage, participants found parallel synthesis intuitive and easy to 
use; many participants reported that parallel synthesis, combined 
with multiple types of intervention support, reduced the subjec-
tive workload of giving interventions and made Assuage more 
approachable. By removing the penalty of adding potentially incor-
rect interventions, we enabled the users to freely explore multiple 
ideas simultaneously. 

In summary, this paper contributes the following: 
• An interactive assembly synthesizer, Assuage, that allows 
the user and the synthesizer to collaboratively search a larger 
space of assembly programs 

• A parallel synthesis approach that reduces the penalty of 
adding incorrect interventions and allows users to explore 
multiple ideas simultaneously 

• A within-subjects study showing the usefulness and usability 
of Assuage compared to a interactive synthesis tool that 
implements the current state of the art. 

2 RELATED WORK 
Program synthesis is used to automatically generate target pro-
grams that satisfy a given specifcation [3, 6, 12, 34, 40]. There are 
two major categories of program synthesis: those with complete 
specifcations and those without. 

Synthesizing with partial specifcations. Partial specifca-
tion approaches include programming-by-example (PBE) and program-
ming-by-demonstration (PBD) systems, which allow users to demon-
strate desired program behavior with specifcations consisting of 
input-output examples or desirable trace demonstrations [8, 37]. 

Gulwani et al. [17] show that PBE is an efective paradigm for 
industrial applications, such as string transformations [15], table 
transformations [16] and data extraction [31]. One of the drawbacks 
of PBE systems is the incompleteness of their specifcations. These 
systems can provide a synthesized result quickly, but the result 
might exhibit incorrect behavior due to a case not covered by the 
incomplete specifcation [9]. Recent work [45] reveals a counter-
intuitive disconnect between the efciency of PBE systems and 
users’ perceived utility of them. 

Synthesizing with complete specifcations. This area of pro-
gram synthesis began in 2006 with the introduction of Sketch [47], 
in which a programmer provides an incomplete program with holes 
and synthesizes code to complete the holes. Following this work, 
syntax-guided synthesis generalizes the partial program with in-
complete details yielding a syntactic template [1], and counterex-
ample guided inductive synthesis (CEGIS) [46] generalizes this for 
infnite state programs. CEGIS uses an iterative process to perform 
inductive generalization for all possible inputs. The approach in 
this paper uses CEGIS, where specifcations consist of two logical 
expressions: a precondition and a postcondition. The precondition 
is a predicate that holds for the initial state (before the assembly 
code executes), while the postcondition must hold for the fnal state 
(after the assembly code executes). 

Compared to PBE systems, a CEGIS specifcation is complete and 
precise. However, the search space is large, and these techniques 
do not scale well for unrestricted real-world problems [9]. While 
Bornholt and Torlak [5] developed symbolic profling techniques 
to identify symbolic execution performance bottlenecks, in syn-
thesis, SMT solving is the performance bottleneck, not symbolic 
execution. Synthesizing assembly code is signifcantly harder than 
synthesizing high-level languages. Assembly programs manipulate 
untyped memory and global states, leading to enormous search 
spaces that are exponential in program length and combinatorial 
in the number of instructions, registers, memory locations, and 
immediate values [28]. State-of-the-art assembly synthesis tools, 
such as McSynth, can generate sequences of only about three to fve 
instructions (i.e., 3–5-instruction programs) within a reasonable 
time period [28, 48, 50], while many assembly code blocks needed 
for essential operating system services require hundreds or thou-
sands of lines of code (e.g., more than 500 lines for OS/161 [26], a 
simplifed teaching operating system). Srinivasan et al. explored 
optimizations for synthesizing machine code from semantic speci-
fcations with a divide-and-conquer scheme [49, 50], but scalability 
is still limited. Prior work [24] requires other special tools to handle 
large cases; Assuage is an alternative, which can synthesize large 
programs using human guidance. 

Trust and performance when interacting with synthesiz-
ers. In addition to scalability challenges, modern user studies on 
program synthesis systems reveal several major usability issues 
and challenges [9, 18, 33, 39]. General black-box program synthesis 
leads to a lack of confdence and trust in synthesized programs 
due to the opaqueness of the synthesis process, even though this 
approach avoids overloading users with details [39, 54]. The am-
biguity of incomplete user-given specifcations, such as examples, 
also misleads the synthesizer to generate plausible, but incorrect 
programs [33]. Since writing the specifcation in a general purpose 
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specifcation language is sometimes harder than writing a program, 
the assistant approach with diferent levels of programming au-
tomation has been explored [43]. 

To the best of our knowledge, interactive CEGIS-based synthesis 
has not been investigated in the literature. Prior work has shown 
that for interactive PBE/PBD systems, annotating input-output ex-
amples [55] or synthesized program components [41] with include 
and exclude sets performed well, and participants achieved better 
performance when they had access to more actionable information 
about the on-going enumerative synthesis process [54]. Similarly, 
in the domain of CEGIS-based synthesis, Assuage both supports 
constraints that allow users to defne include/exclude sets on both 
instructions and portions of the machine state used in a program 
and reveals actionable information about the underlying parallel 
CEGIS synthesis processes. 

Techniques to clarify user intent. Many methods have been 
proposed to clarify user intent during program synthesis when 
the user-provided specifcation is incomplete. Most PBD and PBE 
systems allow users to actively provide additional examples to dis-
ambiguate their intent. There are several approaches that automate 
this process by generating examples that distinguish multiple plau-
sible candidate programs [30, 35, 51]. REGAE [55] extends this work 
by supplementing user-provided examples with many additional 
strategically generated inputs that show the outputs of user-selected 
synthesized program(s) on the input space nearby user-provided 
examples as well as possible unanticipated corner cases far away. 
By looking at the outputs of synthesized programs on these many 
additional inputs, users can clarify their intent by selectively pulling 
input-output pairs into the set of user-provided examples describ-
ing their intent, preserving or changing their desired output for that 
input in the process. Unlike PBE/PBD, CEGIS-based assembly syn-
thesis requires a complete specifcation of what the user wants in 
terms of pre-conditions and post-conditions that must be satisfed; 
therefore, instead of asking the user to provide additional examples 
or demonstrations to clarify what they want, the user provides 
additional constraints to reduce the synthesis search space. 

Techniques to communicate synthesis progress. There have 
been many attempts to present synthesized program candidates 
to the user after the synthesizer fnishes its given synthesis task. 
Topaz [38] generalized the cursor movement capabilities from text 
editors to a graphical domain for graphical program synthesis, 
while Rousillon [7] demonstrates synthesized scripts with a graph-
ical interface showing hierarchical information for web scraping. 
FlashProg [35] introduced program navigation that allows user to 
navigate between all programs synthesized by the underlying PBE 
engine and pick the desired one. Zhang et al. [54] trace and visualize 
various views of all the programs enumerated during the synthe-
sis process as the synthesis process is running, before the synthesis 
task is complete. For example, they show a line chart of how many 
examples each candidate satisfes and a tree view representing the 
space of programs explored so far. Assuage extends this work to 
CEGIS-based assembly synthesis. Analogous to Zhang et al.’s line 
chart, Assuage has a chart of how many test cases satisfy the spec-
ifcation after executing candidates from each of multiple parallel 
synthesis instances. Analogous to their tree view of enumerated 
programs, Assuage shows the top candidates generated by the 

CEGIS synthesizer along with their execution trace, which can help 
the user recognize additional, potentially helpful interventions to 
add. 

Parallel synthesis. Jeon et al. [29] propose a synthesis tech-
nique to combine symbolic search and explicit search by partially 
concretizing a randomly chosen subset of unknowns. These ran-
dom trials of the algorithm can be run in parallel—solving problems 
that were otherwise intractable. Instead of exploiting an inherently 
parallel algorithm, Assuage enables users to explore multiple pos-
sibilities under various interventions in parallel. 

Mixed-initiative systems. Horovitz [27] introduced the prin-
ciples of mixed-initiative user interfaces, which seek synergies 
between intelligent services and users. With mixed-initiative inter-
action, the intelligent services and users collaborate efciently to 
achieve the user’s goal. Assuage leverages this interaction approach 
using the best of human and computer abilities enabling both the 
computer and the human to take initiative and make decisions, 
i.e., the synthesizer does the computational work of producing 
candidate programs and automatically suggesting some interven-
tions, while the human applies interventions that refect higher-
level insight into the fnal program structure and content. Assuage 
supports both multiple types of interventions to let users guide 
and expedite synthesis and multiple visualizations of synthesizer 
feedback about the proposed candidates and the counterexamples 
generated during synthesis. 

3 PRELIMINARIES 
We adopt a CEGIS-based assembly language synthesis toolchain 
from existing work [25, 28]. The goal of general assembly synthesis 
is to automatically produce assembly code from two inputs: a ma-
chine model and a specifcation. The machine model is the machine 
description, which provides an executable model of an instruction 
set architecture. It declares machine states, such as registers and 
memory locations, and defnes the semantics of assembly instruc-
tions. The specifcation describes the intended functionality of the 
target program with pre- and postconditions. We refer the reader to 
prior work [25] for a detailed description of the synthesis algorithm. 

The synthesizer uses a CEGIS technique, which iteratively pro-
duces assembly programs as candidates that are tested against an 
accumulated set of counterexamples (i.e., a set of initial machine 
states that satisfy the precondition and violate the postcondition). 
The conventional CEGIS-based synthesizer starts with 0-instruction 
program synthesis (called stage 0) and proceeds to stage � + 1 when 
synthesis at stage � fails, iterating until synthesis succeeds. In each 
stage, the synthesizer iteratively suggests a candidate program that 
might satisfy the given specifcation, i.e., satisfes the specifcation 
in the presence of the current counterexample set, provides addi-
tional counterexamples that make the candidate program violate 
the specifcation (i.e., the postcondition), and adds them to the ac-
cumulated set. This procedure continues until the synthesizer fails 
to fnd either an appropriate candidate or more counterexamples. 

Since we assume that our target user is familiar only with the 
high-level concepts of assembly language but not the exact syn-
tax or behavior details, we categorize assembly instructions into 
type groups that make sense to users, shown in Table 1. These 
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Coarse-grained types Fine-grained types 
ARITH ADD CMP 

General Arithmetic Addition Comparison 
LOGIC BIT SHIFT 

General Logical Bitwise Logic Shift/Rotate 
MEMOP LOAD STORE 

Memory Handling Load from Store into 
DATAOP MOV 

Data Transfer Data Move 
JMP 

General Branch 
COPROC 

Coprocessor Handling 
Table 1: Assembly Instruction Types. We categorize into 
coarse-grained and fne-grained types. Users can refer to 
both in Assuage. 

type groups can, however, overlap. For example, an instruction 
that performs subtraction, e.g., a sub instruction, is both a general 
arithmetic instruction with type ARITH and an addition operation 
with type ADD. When specifying type information, users can both 
use coarse-grained categories (left column in Table 1) and more 
fne-grained categories (right columns in Table 1). Type groups 
provide high-level primitives that abstract away low-level syntax 
and semantics for assembly languages. These type groups cover all 
instructions declared in the machine model. 

4 USER SCENARIO 
The following scenario illustrates how an engineer, Alex, can use 
Assuage (Figure 1) to synthesize ARMv7 code that implements 
some exception handling code in the Barrelfsh operating system [4]. 
Specifcally, Alex wants to write assembly code that satisfes the 
following specifcation, expressed in pseudocode (shown in the left 
sidebar in Figure 1): 
1. Mem: memory region with 4 slots 

([Mem, 0], [Mem, 4], [Mem, 8], [Mem, 12]) 
2. cond: boolean = *R3 < load_from([Mem, 8]) 
3. precondition: *R2 == [Mem, 0] 
4. postcondition: if cond then *R1 == 0x1 else *R1 == 0x0 

Line 1 indicates that the code can use four locations (called slots) 
in memory Mem. The precondition (Line 3) requires that before 
the code implementing this specifcation executes, register R2 must 
contain a pointer to the specifc memory location ([Mem, 0]), while 
the postcondition (Line 4) requires that when the code fnishes 
executing, register R1 contains 0x1 if the variable cond, which is 
defned in Line 2, is true or 0x0 if cond is false. The variable 
cond (Line 2) is a boolean condition that stores the comparison 
result between the contents of a register (R3) and a value stored 
in a particular location in memory ([Mem, 8]). Alex has some 
basic understanding of MIPS assembly language but has never 
written ARM assembly programs, so she decides to use an assembly 
synthesizer instead. 

Alex starts the synthesizer. In real time, Assuage generates candi-
date implementations of the specifcation and displays information 

on each candidate generated (shown in the middle in Figure 1). 
Using the specifcation, Assuage generates 20 test cases consisting 
of initial states that satisfy the precondition. For each candidate, it 
presents the user with a score, indicating the number of test cases 
for which the candidate satisfes the postcondition. In other words, 
the higher the score a candidate achieves, the closer it is to a correct 
implementation. 

The synthesizer frst starts trying single-instruction candidate 
programs. It quickly determines that no one-instruction program 
can satisfy the specifcation, so it moves on to two-instruction 
programs. Within about a minute, it starts generating candidates 
consisting of three instructions, after determining that there is no 
two-instruction solution. As this synthesis process proceeds, Alex 
watches the live-updated score chart (Figure 2A), which shows the 
highest score that any candidate has achieved so far, and examines 
the top candidates table (Figure 2B), which shows the fve candidates 
with the highest scores. 

While impressed that the best candidate so far is a two-instruction 
program, Alex suspects the synthesizer has wasted time evaluating 
poor candidates. Therefore, she decides to inspect patterns across 
high-scoring candidates for inspiration. To do so, Alex clicks the 
occurrence table (Figure 2C), which shows the frequency of each 
assembly instruction type that appeared in previous candidates and 
the average scores of those candidates. Although the synthesizer 
struggled with low-scoring candidates, Alex fnds it helpful to see 
what kinds of instruction types produced consistently better aver-
age scores. She notices that LOAD and MOV have occurred frequently 
and that candidates with those instructions have higher scores than 
others. She also fnds in the specifcation that the variable cond 
(Line 2) uses the load_from function to read a value from mem-
ory. These observations give Alex some clues, e.g., LOAD should be 
present in the program. She then clicks on promising candidates 
from the candidate table (Figure 2B) to get a detailed execution 
trace and the specifcation analysis for each candidate. Using the 
execution trace, she knows which parts of the specifcation were 
satisfed or unsatisfed by each candidate (Figure 2D). She notices 
that whenever there is a LOAD, part of the specifcation is satisfed. 

Base on these observations, she decides that the program must 
read from memory before it does anything else. Though she is not 
quite sure whether MOV is necessary for the program, she decides to 
explore two ideas in parallel: one where MOV is included in the pro-
gram and one where MOV is excluded from the program. Assuage 
allows the user to explore multiple ideas in parallel instead of com-
mitting to just one. Alex adds two interventions: frst, she selects 
the radio button for the frst instruction and clicks the “Include” 
button. In a pop-up window for “Include”, she selects LOAD from 
a list of instruction types (shown in Table 1) to indicate that LOAD 
should be the frst instruction of the program. She also selects the 
whole program radio button and marks MOV as included, indicating 
that MOV should appear somewhere in the program (Figure 3A); this 
kicks of a new synthesis instance running in parallel with the frst, 
i.e., the original instance. Second, she selects the original synthesis 
instance and then adds a diferent intervention: she again marks 
that LOAD should be the frst instruction in the program and instead 
clicks on “Exclude” and selects MOV from the pop-up window to 
indicate that MOV should not be used anywhere in the program (not 
pictured), kicking of a third synthesis instance running in parallel. 
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Figure 1: Assuage Interface. The side bar on the left shows the task specifcation, the middle panel contains visualizations 
of the synthesis process, and the right panel presents the user with interventions that can be used to guide synthesis. In this 
snapshot of Assuage, there are fve instances running in parallel (described in Section 4); the currently selected instance is 
using a decomposition intervention in which the frst part of the decomposed specifcation (part A) has succeeded, as indicated 
by the green highlighting. 

Figure 2: Pre-intervention synthesizer feedback. (A) displays the highest score among all generated candidates, (B) shows a 
list of the candidates with the top fve highest scores, (C) indicates how frequently each instruction type appears across all 
candidates synthesized so far. Alex has selected the third candidate in B, which looks promising and (D) indicates which parts 
of that selected specifcation have been satisfed (blue) and which have not (red), and provides the values of multiple machine 
states at diferent program points. 

This means that Assuage will not use MOV instructions in any fu- the parallel instances labeled with the user-added interventions 
ture candidates for this third instance. In summary, when Alex adds that caused their creation (gray, orange, and gold-colored lines in 
each intervention, Assuage creates a new synthesis instance using Figure 3D). 
the union of the currently selected instance’s interventions and the So far, Alex has only considered restricting the types of instruc-
newly added one. The live-updated score chart (originally shown tions that Assuage will use, but she is eager to try more types 
in Figure 2A) now shows multiple lines, each representing one of 

5 



UIST ’21, October 10–14, 2021, Virtual Event, USA Jingmei Hu, Priyan Vaithilingam, Stephen Chong, Margo Seltzer, and Elena L. Glassman 

Figure 3: Parallel synthesis and user interventions in Assuage. To guide synthesis, Alex can either (A) constrain programs 
with instruction-level details, i.e., directly mark partial programs as desired or undesired in the fnal results, (B) eliminate 
irrelevant and unused registers and memory locations, or (C) ask the synthesizer to decompose the specifcation into a set 
of smaller, easier-to-solve sub-problems. With each of these user actions, new synthesis instance are initiated, running in 
parallel. Assuage is running with fve synthesis instances with diferent interventions, shown by the fve lines in D and the 
fve nodes in the tree view E. Solid lines in D represent the synthesis instance without decomposition, while dashed lines 
represent multiple sub-instances under decomposition. 

of interventions. With three synthesis instances running in par-
allel, Alex notices that some arbitrary registers (such as R5 and 
R6) appear in candidates but not in the specifcation; she thinks 
these other registers might be irrelevant for this code sequence. To 
guide Assuage towards her intuition, Figure 3B shows how she 
removes all the registers that do not appear in the specifcation, 
except for some fag registers that she thinks might afect control 
fow. Alex applies this intervention on top of one of her previous 
interventions (the one with LOAD and MOV both marked for inclu-
sion), because after inspecting the progress of diferent synthesis 
instances by clicking on diferent lines in Figure 3D, she thinks that 
this synthesis instance looks most promising. At this point, all four 
instances are shown with solid lines in Figure 3D with diferent 
color annotations (gray, orange, gold, and green lines). 

With Alex’s guidance, the synthesizer starts to synthesize pro-
grams of four instructions. While waiting, Alex notices that the 
postcondition has an if-then-else structure, suggesting the possi-
bility of breaking this synthesis problem into small pieces to be 
synthesized separately. Assuage proposes a possible decomposition 
(Figure 3C). Alex confrms that it seems reasonable and decides to 
give it a try. She adds this decomposition as a new intervention, 
shown as the blue dashed line in Figure 3D. At this point, fve syn-
thesis instances are running in parallel as shown in Figure 3E, and 
Alex can sit back and continue to watch the best scores associated 
with each instance rise or inspect any individual instance to better 
understand why its best candidates are not yet full solutions. Fig-
ure 1 shows a screenshot of Assuage with all fve interventions 
applied by Alex. 

Before any of the other instances are able to reach a full solution, 
the blue dashed line representing the instance with the decompo-
sition intervention climbs up to a full score once for each smaller 
synthesis challenge that makes up the full decomposition. That 
means that all components of the decomposition have been synthe-
sized completely, and together they satisfy the original specifcation. 
Assuage returns this sequence of assembly instructions to Alex for 
fnal inspection. Alex is surprised that this interactive synthesizer 
Assuage took about 15 minutes to produce an assembly program 
that satisfed the given specifcation, because without her guidance, 
a traditional synthesizer takes hours to fnish. 

5 DESIGN AND IMPLEMENTATION 
Developing a collaborative system that seamlessly combines hu-
man intuition and expertise with automated CEGIS-based assembly 
synthesis requires an interaction model: we frst describe how users 
can intervene to guide synthesis, then how Assuage gives feedback 
to users for better understanding, and fnally how Assuage exposes 
parallelism. 

5.1 User Interventions 
Assuage provides two types of interventions that allow users to 
provide information to the synthesizer: Constraints and Decomposi-

tion. Constraints include instruction constraints, which allow users 
to constrain specifc instructions, and location constraints, which 
allow users to eliminate irrelevant registers and memory locations 
to expedite synthesis. Decomposition breaks the specifcation into 
smaller problems. Assuage automatically provides suggestions for 
location constraints and decomposition based on the specifcation; 
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if the user likes these suggestions, she can create a new instance 
including the new intervention, either by adding it to the set of 
interventions present in an already running instance or by creating 
an instance with only the suggested interventions. 

Constraints. Assuage allows users to introduce constraints on 
instructions for the target program and the machine model that are 
used for assembly synthesis. 

Instruction Constraints enable users to place constraints on in-
struction choice and ordering as shown in Figure 3A. We refer to 
both coarse-grained and fne-grained instruction types in Table 1 
as �1, �2, . . . , �� , and their corresponding grouped instruction sets as 
��1 ,��2 , . . . ,��� for convenience. Given a candidate assembly pro-
gram � with � instructions, i.e., � ���� (�) = �� (�� −1 (. . . (���� (�)) . . . )), 
where ���� (�) and � ���� (�) represent the initial and fnal machine 
states, respectively, and �� represents the �-th instruction in the 
program � , we introduce the following constraints, which impose 
restrictions on either parts of the program or the entire program 
behavior. 

• Include (��� ) where � ≤ �: will hold for programs � ′ with � 
(� ≥ � ) instructions where ∃� (� ≤ �), �� ∈ ��� . 

• IncludeLoc (��� , � ) where � ≤ �∧ � ≤ � : will hold for programs 
� ′ with � (� ≥ � ) instructions where � � ∈ ��� . 

• Exclude (��� ) where � ≤ �: will hold for programs � ′ with � 
(� ≥ � ) instructions where ∀� (� ≤ �), �� ∉ ��� . 

• ExcludeLoc (��� , �) where � ≤ � ∧ � ≤ � : will hold for pro-
grams � ′ with � (� ≥ � ) instructions where � � ∉ ��� . 

• Seq (��� , . . . ,�� � ) where (� ≤ �)∧( � ≤ �) and Length(��� , . . . ,�� � 

� : will hold for programs � ′ with � (� ≥ � ) instructions where 
∃� (� ≤ � − �), �� ∈ �� ∧ · · · ∧�  ��+� ∈ �� � . 

• Extend (�) where (� > � ): will extend the program length to 
� instructions. 

Inclusion, i.e., Include and IncludeLoc, requires that one or one spe-
cifc group of instructions appears in the target program. In Section 
4, through interacting with the Assuage interface, Alex implicitly 
added IncludeLoc (LOAD, 1) to force the frst instruction to be a LOAD-
like instruction. Exclusion, i.e., Exclude and ExcludeLoc, rules out a 
specifc group of instructions for the whole program or for some 
specifc location in the program. Likewise, in Section 4, Alex implic-
itly added Exclude (MOV) to rule out any data movement instructions. 
Seq defnes a partially ordered sequence that must appear in the 
target program. For example, Alex could click the “Seq” button 
in Figure 3A and select LOAD and MOV in order, to implicitly add 
Seq (LOAD, MOV), which requires that a partial sequence contain-
ing LOAD and MOV must appear, consecutively and in order, in the 
synthesized program. Extend directly extends the program to the 
user-specifed length. 

Location Constraints enable users to eliminate use of certain reg-
isters or memory locations in the synthesized program, as shown 
in Figure 3B. Machine models contain more information than is 
strictly necessary to facilitate synthesis. The complete machine 
model contains the descriptions of all registers, memory locations 
and instructions for the entire system. Removing registers and 
memory locations that are not needed to produce a correct imple-
mentation for a specifc specifcation will speed up synthesis and 
reduce a user’s cognitive load. Assuage collects all related registers 
and memory locations that a specifcation might access (explicitly 

or implicitly), compares them to the complete machine model, and 
recommends a shrinkable location set to the user. This shrinkable 
location set includes both registers and memory entries that contain 
arbitrary values without specifcation restrictions. Removing those 
arbitrary location elements should not afect program correctness. 
For example, a specifcation might access only a subset of the slots 
inside a memory region. Eliminating the irrelevant and unused 
head and tail slots in memory regions can reduce the search space 
and expedite synthesis. While Assuage analyzes the specifcation 
and proposes a reduced machine model, we rely on user guidance 
to apply the reduction. While these reductions frequently work, 
they are not guaranteed to be correct when, for example, an im-
plementation requires temporary storage (e.g., producing a swap 
function). One could imagine letting Assuage automatically create 
new instances for these suggested location reductions, but we leave 
investigation of this approach for future work. 

Decomposition. Since the search space and synthesis time grows 
exponentially in the number of instructions, our intuition was that 
breaking the problem down and solving smaller problems would 
improve synthesis performance considerably [42]. As it is over-
whelming to consider the specifcation as a whole, we distinguish 
three statement structures that might comprise the postcondition: 
if-then-else (ITE), conjunction (AND), and disjunction (OR). Given 
a specifcation with precondition Pre and postcondition Post with 
one of these structures, Assuage proposes one of the following 
decompositions: 

) = 
• Post = if A then B else C: The ITE-like specifcation can 
be decomposed into three blocks as shown in Figure 3C. 
Each block has its own specifcation, referred to as sub-
specifcation. These three blocks share the same precondition 
Pre. The frst block contains two exit points, which allow 
it to branch into diferent following blocks based on the 
condition A. The second and third blocks synthesize for B 
and C, respectively, and they both exit to the ultimate exit 
point of the entire program. Concatenating the three blocks 
produces three smaller synthesis problems that satisfy the 
specifcation Post. 

• Post = A and B: The AND-like specifcation can be decom-
posed into two blocks. Unlike the ITE format, these two 
blocks are coherent and no control fow is necessary. The 
frst block achieves the partial postcondition A, while the 
second block takes the synthesized program for A as a prefx 
and synthesizes the program for the entire Post (A and B). 

• Post = A or B: The OR-like specifcation cannot simply be sep-
arated into A and B, but we can rearrange Post into the ITE 
format, if A then exit else B, and decompose it into two blocks. 
Similar to the ITE format, the frst block contains two exit 
points, one to the ultimate exit point of the entire program 
and the other to the entry of the second block, based on the 
condition A. The second block achieves the partial postcon-
dition B. Concatenating the two blocks produces two smaller 
synthesis instances the satisfy the original specifcation Post. 

These proposed decompositions may be less efcient or produce an 
even more difcult synthesis problem. We rely on user guidance 
to determine of the proposed decomposition is a good avenue of 
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exploration. As suggested in the discussion of machine model re-
duction, this is another area where letting Assuage automatically 
generate instances using the proposed decompositions could prove 
fruitful. 

5.2 Synthesizer Feedback 
Empowering users to intelligently apply all these interventions 
requires that the synthesizer provides information that helps the 
user understand how synthesis is progressing. Assuage presents the 
following dynamically updated information during the synthesis 
process: 

Candidate Scoring. To visualize approximately how close var-
ious candidates are to satisfying the specifcation, Assuage gen-
erates M arbitrary initial states satisfying the precondition as test 
cases and evaluates the candidate programs P against them on ev-
ery synthesis iteration. If the corresponding fnal states of N of 
the M initial states verify successfully after executing a program P, 
i.e., they satisfy the postcondition, Assuage grades the candidate 
P with a score � /� (Score (P) = � /�). This scoring mechanism 
introduces a trade-of between the time overhead needed to run all 
the test cases and the user’s perception of a candidate’s quality. We 
discuss the selection of � = 20 in Section 6. 

During synthesis, the score chart (Figure 2A) gives user real 
time updates about the synthesis process. The x-axis of the score 
chart shows the total number of candidates that have been tried 
by the synthesizer across all parallel synthesis instances; the y-
axis shows the highest score among the generated candidates. This 
view allows a user to monitor synthesis progress over time. For 
example, if one line suddenly increases dramatically, it indicates 
that synthesis has produced some better candidates, and the user 
might want to inspect the corresponding candidates to understand 
what is preventing them from fully satisfying the specifcation; the 
right information should help them translate their observations 
into helpful interventions. Assuage also displays a ranking list of 
the candidates with the top fve highest scores for a given synthesis 
instance (Figure 2B), so the user can determine the cause of a given 
instance’s higher scores. 

Type Frequency. To provide a more holistic view at the instruc-
tion level, the frequency table (Figure 2C) shows, for a selected 
instance, how frequently each assembly instruction type appears 
across all candidates synthesized so far. For each individual syn-
thesis instance, Assuage shows the type frequency for the whole 
program and for diferent instruction locations (e.g., “1st Insn” and 
“2nd Insn” in Figure 2C) and the average score of candidates that 
include each instruction type. For example, if the frequency of LOAD 
is extremely high and its average score looks good, it suggests 
that the fnal program should contain a LOAD. By default, Assuage 
shows coarse-grained type information (left column in Table 1) and 
when the user clicks on a specifc type, it shows the frequency of 
its fne-grained types (right columns in Table 1). Compared to the 
score information, type frequency indicates a more concrete view of 
the target program and provides a sense of the connection between 
instructions and their behaviors against the specifcation. However, 
it also requires a deeper understanding of assembly language. Our 
assumption is that instructions that are frequently chosen by the 

synthesizer or get high scores on average have a higher probability 
of occurring in the target sequence. Type frequency information 
with candidate scores gives users intuition about the potential target 
sequence and the possible constraints to apply. 

Specifcation Analysis. To let users constrain programs (as 
mentioned in Section 5.1), Assuage applies each candidate P and its 
corresponding counterexamples CE (a set of initial machine states) 
to the postcondition expression and creates an execution trace by 
concretizing all immediate states after each instruction with P and 
CE. This is the debug information shown to the users, i.e., execution 
values at every program point and a specifcation analysis in which 
Assuage highlights specifcation-satisfying and specifcation non-
satisfying parts of P’s behavior during each iteration, i.e., the parts 
that lead to postcondition violations with diferent colors (blue 
and red highlights in Figure 2D). Highlighting the unsatisfed parts 
helps a user make further suggestions. For every specifcation non-
satisfying part, Assuage also explicitly presents the way it was 
generated from the initial machine states (.init postfx notations 
in Figure 2), which helps the user understand why that part violates 
the postcondition . The specifcation analysis and execution trace 
provide a detailed view, which requires a good understanding of 
assembly language concepts to appreciate and exploit. It helps users 
confrm their guess about some specifc candidates. Experts will 
be more likely able to beneft from this particular feature than non 
experts. 

5.3 Parallel Synthesis 
Assuage provides an integrated representation of the interventions 
that users have performed so far during synthesis. When the user 
adds an intervention, Assuage creates a new synthesis instance 
using the union of the currently selected instance’s interventions 
and the new one. The tree view (Figure 3E) shows all existing 
instances, where every child instance contains all the interventions 
of its parent. Assuage also plots multiple lines in the score chart, 
as shown in Figure 3D, where each line represents the progress of 
one synthesis instance. Assuage highlights the currently selected 
instance with a thicker border in Figure 3E and thicker lines in 
Figure 3D. 

Compared with traditional synthesis, Assuage’s support for 
parallelism allows users to explore multiple possible interventions 
simultaneously. By spawning new synthesis instances when users 
add interventions, while continuing to run all existing instances, 
parallel synthesis reduces the penalty of making mistakes. 

6 USER STUDY 
To validate that assembly synthesis can be scaled with user in-
terventions and to evaluate the usefulness and efectiveness of 
Assuage, we conducted a within-subject study with 21 participants. 
As a baseline, we implemented a CEGIS-based synthesizer that 
represents the state of the art in traditional synthesis interface af-
fordances; Table 2 illustrates the comparison between the control 
and experimental synthesizers’ capabilities. Instead of using a tra-
ditional CEGIS-based synthesizer, we compared against a baseline 
condition where participants completed tasks using a traditional 
synthesizer that provided feedback on the synthesis process and al-
lowed users to apply instruction constraints only. The experimental 
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Synthesizer Feedback User Interventions 
Candidate Type Specifcation Instruction Location Parallel Decomposition Scoring Frequency Analysis Constraints Constraints Synthesis 

Control ✓ ✓ ✓ ✓ 
Experiment 
(Assuage) ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 
Table 2: Controlled user study design of the control and experimental synthesizers. 

Assuage: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA 

synthesizer, i.e., Assuage, had all the features described in Section 5 
enabled. We ask the following research questions: 

• RQ1: Compared to the prior state of the art, can Assuage help 
a user more efciently propose interventions and more quickly 
arrive at a specifcation-satisfying program? 

• RQ2: How does Assuage afect users’ subjective workload and 
experience during assembly synthesis? 

• RQ3: How do users respond to Assuage holistically? 
• RQ4: How do users respond to each feature of Assuage, in-
cluding parallel synthesis? 

• RQ5: What obstacles do users encounter when using Assuage 
for interactive (assembly) synthesis? 

6.1 Participants and Settings 
We recruited 21 participants (3 female and 18 male). Seventeen were 
recruited through mailing lists of several research groups at two R1 
universities, and four were reached through professional networks. 
Of these four, three participants knew at least one author, but were 
not involved in the project. Participants received a $25 Amazon 
gift card as compensation for their time. Nine participants were 
graduate students, fve were undergraduate students, and the other 
six were professional developers. Participants had a diverse range of 
prior experience with assembly language. Ten participants said they 
knew assembly basics but only used it several times, seven said they 
were familiar with assembly languages and have used them many 
times, and four said they were experts in assembly and remembered 
most of the syntax and semantic details. The majority of participants 
(15/21) said, when writing assembly programs, they often had to 
search online for the specifc instruction set architecture. All non-
expert participants considered writing in assembly more difcult 
than writing in other familiar languages. We conducted all studies 
using a Ubuntu 18.04 LTS computer with 32G of memory. 

6.2 Tasks 
To design realistic programming tasks for assembly programs, we 
selected two tasks derived from the Barrelfsh operating system [4] 
and the book Hacker’s Delight [52], which is commonly referred 
to as the “Bible of bit twiddling hacks” [19]. The specifcations of 
these two tasks in pseudo code and their solutions in ARM assembly 
sequence are listed below, Note that these tasks might have multiple 
correct solutions. In our study, the specifcations are written by a 
domain expert and given to users, who are not allowed to alter them. 
We restrict the synthesizers to searching for assembly programs of 
up to 4 instructions for one specifcation. 

Task 1. This task is the same as the example mentioned in Sec-
tion 4. Without any interventions, the CEGIS-based synthesis for 
this task fnishes in about 6.1 hours on the same machine used in 

the user study. Using Assuage, an omniscient user, who knows 
which interventions should be applied, i.e., the correct decomposi-
tion and constraints, can successfully synthesize a 12-instruction 
program with control fow (4 instructions for each decomposed 
sub-specifcation and 3 decomposed sub-specifcations in total) in 
about 5 minutes. 
Specification: 

Mem: memory region with 4 slots 
([Mem, 0], [Mem, 4], [Mem, 8], [Mem, 12]) 

cond: boolean = *R3 < load_from([Mem, 8]) 
precondition: *R2 == [Mem, 0] 
postcondition: if cond then *R1 == 0x1 

else *R1 == 0x0 

ARM assembly sequence: 
ldr r1, [r2, #8] 
cmp r3, r1 
movlo r1, #1 
movhs r1, #0 

Task 2. This task is derived from two benchmark examples: 
turning on the rightmost 0-bit and turning of the rightmost 1-bit 
in a 32-bit vector. Without any interventions, the CEGIS-based 
synthesis for this task fnishes in about 1.2 hours. The omniscient 
user using Assuage can successfully synthesize a 4-instruction 
program (2 decomposed sub-specifcations) in about 3 minutes. 
Specification: 

val: 32 bit = *R1 
precondition: true 
postcondition: ( *R2 == (val + 0x1) & val ) 

&& ( *R3 == (val - 0x1) | val ) 

ARM assembly sequence: 
add r2, r1, #1 
and r2, r1, r2 
sub r3, r1, #1 
orr r3, r1, r3 

6.3 Methodology 
We conducted a 75-min study session with each participant and, 
with permission, recorded the session. In each session, with a think-
aloud protocol, participants completed one of the two tasks using 
the synthesizer in the control condition and the other task using the 
experimental synthesizer (i.e., Assuage). To mitigate any learning 
efects, both the order of tasks and of interactive synthesizers were 
counterbalanced across participants through random assignment. 
Before each task, participants were given a tutorial video of the 
features of the synthesizer they would have access to during that 
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Figure 4: Subjective workload and usability measurement. 
The answers for helpfulness and usability are reverse scored. 
Users perceived less mental demand, felt less time pressure, 
spent less efort, and gave themselves better performance rat-
ings with Assuage. Users considered Assuage more helpful 
and usable. 

Figure 5: The preference of diferent expertise levels. Users 
with diferent level of expertise preferred Assuage for assem-

bly synthesis. 

task. They were then given 20 minutes to fnish the assigned task. 
The task was considered failed if participants did not guide the 
synthesizer to a specifcation-satisfying assembly sequence within 
that time limit. After each task, participants flled out a survey 
about their experience using the assigned synthesizer. The survey 
included questions shown in Table 3, i.e., fve NASA Task Load Index 
questions [22] to rate their perceived subjective workload during 
the task and two questions about the usefulness of the assigned 
synthesizer. After fnishing both tasks, participants answered a fnal 
survey to directly compare their experiences using each synthesizer. 
We open-coded participants’ responses with themes and used them 
to shed light on the underlying reasons for the quantitative results 
in the following section. 

7 USER STUDY RESULTS 

7.1 User Performance 
In the experiment condition (i.e., using Assuage), 20 of 21 partic-
ipants successfully guided the synthesizer to a correct assembly 
solution, while only 8 participants fnished the task in the control 
condition. Fisher’s exact test [11] on the performance comparison 
shows that the diference is statistically signifcant (� < 0.001). To 
compute average task completion time, we assigned the time-out 
limit of 20 minutes to those users who were unable to complete 
a task. The average task completion time with Assuage was 9.28 

minutes, while the average task completion time in the control 
condition was 17.57 minutes. Welch’s t-test [53] shows the mean 
diference of completion time is statistically signifcant as well 
(� < 0.001). As for diferent tasks, all eleven participants using 
Assuage for Task 1 fnished successfully (8.31 minutes on average) 
and nine out of ten participants using Assuage for Task 2 fnished 
successfully (10.25 minutes on average). By contrast, in the control 
condition, fve out of ten participants fnished Task 1 (17.24 minutes 
on average) and three out of eleven participants fnished Task 2 
(17.89 minutes on average). 

Qualitative data speaks to four main reasons why participants 
performed signifcantly better with Assuage (RQ1). First, Assuage 
aforded participants more choices to prune the search space during 
synthesis, while participants in the control interface had very few 
options other than constraining instruction usage. P18 complained, 
“it felt like the number and precision of constraints required to get an 
answer in a reasonable time were barely sufcient.” We also noticed 
that participants were more inclined to wait for some active syn-
thesis progress and analyze both the specifcation and candidates 
to add the corresponding constraints. Assuage provides more in-
formation to help them analyze and apply interventions. Second, 
parallel synthesis allowed participants to more freely apply inter-
ventions. P9 wrote, “the fact that you lost previous programs when 
adding new constraints meant it was difcult to decide whether to add 
more.” P2 explained, “it’s really nice when you have these diferent 
kinds of experiments that you can do in parallel and you’re not forced 
to directly have the perfect constraints from the beginning.” Third, 
parallel synthesis created high fault tolerance. P1 mentioned, “if you 
ever make a mistake, then it won’t have a hard reboot for the whole 
tool.” P12 also complained about the control interface, “if I want to 
change my mind about something, I would have to basically stop all 
the progress. That was very punishing and a huge burden.” Fourth, 
participants gained more engagement during synthesis and showed 
more trust in the synthesized result. P19 explained, “the fact that 
there was more information there certainly kept me engaged in the 
tool.” P12 also said, “I like the tree view and the concurrent synthesis. 
It felt like more stuf was happening. It was kind of reassuring.” 

Figure 4 shows participants’ responses to the questions in Table 3 
(RQ2). With Assuage, participants perceived less mental demand, 
felt less time pressure, spent less efort, and gave themselves better 
performance ratings. Welch’s t-test on the comparisons in Figure 4 
shows that the mean diferences of mental demand, performance 
and efort are statistically signifcant (� = 0.045, � = 0.039, � = 
0.008). However, there is no signifcant improvement in participants’ 
response to perception of hurry and frustration (� = 0.062, � = 
0.224). The mean diferences of helpfulness and usability are also 
statistically signifcant (� = 0.016, � = 0.034), which indicates the 
perception of usability preference is consistent across participants. 

Adding up t-tests across all our experiments, we ran 8 statis-
tical tests (including fve NASA-TLX questions, two helpfulness 
and usability measurements, and completion time), giving us a 
Bonferroni-corrected threshold of 0.00625 for an initial � of 0.05. 
Note that those eight tests are dependent, which shows the Bonfer-
roni correction is conservative in our study setting. After correction, 
the mean diference of completion time between two synthesizers 
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Q1. How mentally demanding was this task with this tool? (1—Very Low, 7—Very High) 
Q2. How hurried or rushed were you during this task? (1—Very Low, 7—Very High) 
Q3. How successful would you rate yourself in accomplishing this task? (1—Perfect, 7—Failure) 
Q4. How hard did you have to work to accomplish your level of performance? (1—Very Low, 7—Very High) 
Q5. How insecure, discouraged, irritated, stressed, and annoyed were you? (1—Very Low, 7—Very High) 
Q6: How helpful was this tool for writing assembly programs? (1—Not Helpful, 7—Very Helpful)* 
Q7: How likely to use this tool in the future of possible assembly programming? (1—Not Likely, 7—Very Likely)* 

Table 3: Participants rated on a 7-point scale. Q1-Q5: rating the subjective workload under diferent aspects: mental demand, 
hurry, performance, efort, and frustration; Q6-Q7: rating the usefulness of the assigned synthesizer. Asterisks designate the 
statements that are reverse scored. 

Assuage: Assembly Synthesis Using A Guided Exploration UIST ’21, October 10–14, 2021, Virtual Event, USA 

Figure 6: Which interface did you prefer to use? 

Figure 7: Which interface was more useful? 

Figure 8: How useful vs. complicated was each synthesizer 
feedback information? 

Figure 9: How useful was each intervention and parallel syn-
thesis in Assuage? 

is still statistically signifcant and the mean diference of efort par-
ticipants spent is marginally signifcant. Yet there is no signifcant 
diference for other questions after correction. 

7.2 User Preference 
Figures 6 and 7 show the overall preference and usefulness ratings 
(RQ3). Sixteen of 21 participants preferred or strongly preferred 
synthesis with Assuage, and 19 of 21 participants thought Assuage 
more useful. We also categorize diferent kinds of users with assem-
bly expertise and investigate their performances and preferences in 
the user study. Figure 5 shows that the strong preference using As-
suage did not vary much across participants with diferent degrees 
of expertise. 

In the survey for each task, we asked participants to rate the use-
fulness and subjective workload of each synthesis feature available 
to them during the task (RQ4). Figure 8 shows the comparison of 
each type of synthesizer feedback information that was present in 
both conditions. The candidate scoring was most preferred; partic-
ipants’ comments indicate that it provides a holistic view of the 
back-end synthesis. For example, P10 described that “it provides a 

nice visualization of how the synthesis is doing.” Specifcation analy-
sis was considered slightly more helpful than the type frequency, 
while their complexities were rated similarly. Unsurprisingly, partic-
ipants with higher self-reported levels of expertise rated themselves 
higher in understanding what the candidates were doing and how 
close they were to satisfying the specifcation. 

Figure 9 indicates the perceived usefulness of each intervention 
type as well as parallel synthesis in Assuage. The majority of partic-
ipants (15/20) expressed a strong preference towards both location 
constraints and decomposition features. Participants hesitated to 
try decomposition at the beginning as P2 explained, “the decompo-

sition interface is more intimidating than the other interfaces since 
there is more going on; the other things are super easy and clear about 
what’s happening.” As for parallel synthesis, all but one participant 
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found parallelism useful and thought that it provided more possi-
bilities to explore. We will discuss more qualitative observations in 
Section 7.3. 

7.3 Qualitative Observations: Obstacles and 
Lessons 

Having Parallel instances requires less activation energy to 
add interventions and encourages simultaneous exploration. 
P15 expressed the common sentiment well: “I was able to put up 
new possibilities, but I didn’t have to commit all or nothing to them. 
The other ones would still work and [Assuage] allows me to explore 
the space of things that I could do.” P2 also explained, “it’s really 
nice when you have these diferent kinds of experiments that you 
can do in parallel and you’re not forced to directly have the perfect 
constraints from the beginning.” “The fact that you don’t have to 
restart but just keep intervening in the meantime both saves time and 
also saves mental energy,” P7 exclaimed. Though we were wary of 
revealing the underlying parallel synthesis process and exposing 
users to the associated additional complexity, users loved leveraging 
parallel synthesis and were able to wield it more efectively to reach 
their goals compared to the non-parallel (control) condition. Twelve 
out of 21 participants had to restart the synthesis process in the 
control condition due to incorrect interventions; some of them even 
restarted the process four times in a span of 20 minutes. Assuage 
reduced the penalty of adding incorrect interventions, so users were 
less hesitant to add them. As a result, users explored multiple ideas 
simultaneously. Several participants expressed that the thought 
process was diferent with parallel synthesis: P8 said, “[Assuage] 
was much more open to experimenting, [control interface] was very 
streamlined and it had a single thought process.” P6 also explained, 
“In [Assuage], you’re able to quickly try a lot of diferent things at the 
same time, while I think [control interface] forces you to slow down a 
lot and think carefully about what constraints you would [want to 
add], so you want to be sure that you’re not adding constraints that 
could be wrong or not optimal, because you have to restart all over 
again.” 

Involvement increases trust. Participants trust the synthesizer’s 
result when they are involved more in the synthesis process. P4 
said, “I’m involved enough in the process that I trust the results. I can 
see the intermediate steps, I can look at the programs, and I can help 
it along, so I feel like given seeing so much of what’s going on makes 
me trust the tool more." Nine participants reported appreciation for 
being involved in the synthesis process. P12 said “I like the tree view 
and the concurrent synthesis. It felt like more stuf was happening. It 
was kind of reassuring.” In contrast, for some elements that were 
“too automatic,” users expressed concern. P7 expressed his concerns 
specifcally about decomposition: “I also wonder how much we can 
trust the automatic decomposition like if there could be any errors 
because that’s automatic, so I’m less likely to fully rely on it.”. On the 
other hand, participants also did not like too much involvement. 
P13 complained, "[control interface] is pretty easy to use, but I don’t 
think it is really helpful to fully synthesize instructions automatically, 
it involves a lot of user interactions." 

Idle time increases doubts in interventions (RQ5). P12, P13, 
P16, and P21 restarted the synthesis process in the control condition 

after few minutes of idling, even though the set of constraints pro-
vided by them were correct! The think-aloud strategy revealed that 
they started questioning their constraints while sitting idle as the 
synthesis process progressed, eventually resulting in their decision 
to restart synthesis with diferent constraints. P16 explained, “The 
score started to go down when I added [Exclude Coproc] constraint, so 
I may have to restart the process” after idling for a few minutes, even 
though the constraint she added and the intuition behind it were 
right. This did not happen when participants were using Assuage. 

Participants concern about solution quality (RQ5). Expert 
users frequently expressed concern about solution quality. Three 
participants (2 experts, 1 intermediate user) reported that there is a 
trade-of between fnding a solution quickly and synthesizing opti-
mal solutions. For example, using decomposition in Assuage, they 
were able to produce correct solutions efciently, but the solutions 
were diferent than what they would have written manually. P11 
explained, “this actually generated a worse solution using jump. The 
optimal solution will not use jump, since ARM has conditional instruc-
tions.” Experts frequently optimize for some metric: e.g., fewest 
lines of code, most performant, or most easily understood by a 
person, while the synthesizer does not. 

On the other side, by adding instruction constraints, P18 observed 
that at one point, they were “now just guiding the synthesizer to 
generate programs that I would write myself given this specifcation; 
this prevented the synthesizer from generating interesting solution.” 
Some participants were interested in obtaining eccentric solutions, 
like obscure bit manipulation programs for a given specifcation. 
By adding constraints they sometimes prevented the synthesizer 
from generating such solutions. 

Expectation violations were not rare (RQ5). There were a few 
instances of expectation violation when the participant expected 
the synthesizer to “understand” the specifcation better. P5 was 
confused when they remarked, “why is the synthesizer exploring 
conditional instructions [when] there [are] no conditional elements 
in the specifcation?” Some participants also expected additional 
“intelligence” from the synthesizer such as knowing when to use 
conditional instructions, when to move data, and what registers to 
use. 

More information increases learning curve (RQ5). Several 
participants explained that it was hard to inspect all the information 
provided within a limited time. Three participants (P4, P11, P14) 
explicitly mentioned they would perform better after getting more 
familiar with the interface (both control and Assuage), showing 
that there was a steep learning curve for assembly synthesis. 

Participants expressed the need for more granular constraints 
(RQ5). Two experts (P5, P15), as well as two intermediate users 
(P2, P11) and four novices (P6, P7, P10, P12), expressed a preference 
for being able to express constraints at a fner granularity, such as 
directly assigning some particular instructions or registers in the 
target sequence instead of only manipulating with high-level type 
abstractions. One possible explanation is that with synthesizer feed-
back, participants gained more insight about the synthesis process, 
which allowed them to provide more detailed guidance to help the 
synthesizer make progress. However, we are worried that enabling 
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fner-grained interventions could increase the complexity of the 
interface, thereby imposing more subjective workload on users. 

8 DISCUSSION AND FUTURE WORK 
While signifcant efort has been devoted to optimizing synthesis 
algorithms, there are still limits to what can be accomplished with-
out human intervention. This within-subjects study of Assuage, a 
novel interactive synthesis tool, demonstrates how much more the 
human and the synthesizer were able to accomplish together with 
sufcient interface design. 

We are well aware that, compared to traditional interactive syn-
thesis, Assuage’s parallel support reveals more code-rich informa-
tion and synthesis process details to users, increasing complexity 
and potentially burdening users mentally. Surprisingly, when using 
parallel synthesis, participants felt less mental demand overall. One 
explanation is that although Assuage showed more information 
and had a more complex UI, users could gain more information 
about the synthesis process, making it easier for them to give efec-
tive feedback. This also supports the fact that participants requested 
support for more specifc constraints. Moreover, participants typi-
cally guided the synthesis with a trial-and-error procedure, which 
is more demanding when the cost of errors is high. Since the parent 
instance with no intervention is always running, participants can 
easily roll back and apply new interventions directly to the parent 
instance, letting the current instance fail if the interventions are 
counterproductive. Having multiple parallel instances at the same 
time also prevents long stretches of idle time, which introduced 
uncertainty in users’ interventions, as mentioned in Section 7.3. 

Expectation violations were not rare in our user study; most of 
them were confused about the capabilities and the scope of the 
synthesizer. Grimes et al. [14] show that expectation violations lead 
to mistrust and distrust in the system. In the future, we plan to 
investigate ways to establish appropriate trust by improving the 
communication of the synthesizer’s capabilities to users. 

Myers and McDaniel [36] point out that one major obstacle while 
using PBE/PBD systems was the lack of confdence and trust in 
synthesized programs, since users were not able to inspect the 
synthesis process or understand the synthesized programs. When 
using Assuage, especially with parallel instances, users are more 
involved in the synthesis process, which increased their trust in the 
results. However, users also did not prefer too much involvement. 
Balancing between the complexity and the usability of the interface 
remains an important avenue of investigation, to identify “sweet 
spots” where (1) users are involved enough to trust the outcome but 
not so involved that they feel the system is not helping them at all, 
and (2) without being overwhelmed by too much information, users 
have enough information to take informed actions with confdence, 
or at least without fear of the consequences of messing up. 

While experts who are already capable of producing correct, 
highly-optimized assembly code may not be inclined to adopt a syn-
thesizer, synthesis is benefcial to less expert programmers or those 
unfamiliar with a required assembly language. The combination of 
synthesis and Assuage can augment or replace the assembly code 
composition process, so developers can focus on other aspects of 
their system. It is a happy side efect if a user’s interaction with As-
suage teaches them something about writing assembly programs, 

much like Googling for Stack Overfow answers to a programming 
question sometimes teaches us new knowledge but usually just 
helps us get a job done. 

Overall, Assuage is an instantiation of mixed-initiative interac-
tive synthesis, a promising class of interactive synthesizers that 
may generalize to additional complex, unrestricted, real-world pro-
gramming challenges beyond assembly programming. 

9 CONCLUSION 
This paper presents a novel interactive assembly synthesis tool, As-
suage, that communicates the progress explored by the synthesizer 
to users, so users can operate on generated candidate programs, 
intervene from diferent aspects, explore various possibilities in 
parallel, and provide more valuable guidance to the synthesizer. It 
allows the user and the synthesizer to work collaboratively towards 
generating a program that satisfes a complete specifcation of what 
the program should do. We evaluated its usefulness and usability 
in a within-subjects lab study with twenty-one participants and 
showed that, compared to prior state of the art interactive synthe-
sis afordances, the availability of multiple types of interventions 
and parallel synthesis processes enabled more users, regardless of 
their level of expertise, to complete realistic assembly programming 
tasks. 
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