Solutions to sample midterm questions

1. Let \(x = 1 + \sqrt{1 + \sqrt{2}} \). Then

\[
\begin{align*}
 x - 1 &= \sqrt{1 + \sqrt{2}} \\
 (x - 1)^2 &= 1 + \sqrt{2} \\
 x^2 - 2x + 1 &= 1 + \sqrt{2} \\
 x^2 - 2x &= \sqrt{2} \\
 x^4 - 4x^3 + 4x^2 &= 2 \\
 x^4 - 4x^3 + 4x^2 - 2 &= 0
\end{align*}
\]

Hence if \(x = p/q \), then \(p \) divides 2 and \(q \) divides 1. The only possibilities are \(\pm 1 \), and \(\pm 2 \). But \(\sqrt{1 + \sqrt{2}} > 1 \), and thus \(x > 2 \). Thus \(x \) must be irrational.

2. Define \(a_n = 8^n/(n!)^2 \). Then

\[
\frac{a_{n+1}}{a_n} = \frac{8^{n+1}}{(n+1)^2} \cdot \frac{(n!)^2}{8^n} = \frac{8}{(n+1)^2} \to 0
\]

and therefore by the ratio test, \(\sum 8^n/(n!)^2 \) converges.

Now consider \(\sum (-1)^n b_n \) where \(b_n = 1/\sqrt{n^2 + n} \). Since \(n \) and \(n^2 \) are both increasing functions, \(n^2 + n \) is an increasing function also, and hence \(1/\sqrt{n^2 + n} \) is a decreasing function. In addition, \(b_n < 1/n \) for all \(n \), so \(b_n \to 0 \) as \(n \to \infty \). Therefore, the series \(\sum (-1)^n b_n \) satisfies the conditions for the alternating series theorem, and hence it converges.

3. (a) Let \(x \in S \cup T \). Then either \(x \in S \) so \(x \leq \sup S \), or \(x \in T \) so \(x \leq \sup T \). Hence, \(x \leq \max \{ \sup S, \sup T \} \). Thus \(\max \{ \sup S, \sup T \} \) is an upper bound for \(\sup S \cup T \).

Now suppose that \(m \) is an upper bound for \(S \cup T \). Hence \(m \geq x \) for all \(x \in S \cup T \). Thus \(m \geq s \) for all \(s \in S \), so \(m \geq \sup S \) as \(\sup S \) is the least upper bound for \(S \). Similarly \(m \geq t \) for all \(t \in T \). Hence \(m \geq \sup T \) as \(\sup T \) is the least upper bound of \(T \). Therefore \(m \geq \max \{ \sup S, \sup T \} \). Hence \(\max \{ \sup S, \sup T \} \) is an upper bound, and it is the least upper bound, so it must equal \(\sup S \cup T \).

Now consider \(x \in S \cap T \). Hence \(x \in S \) and \(x \in T \). Then \(x \leq \sup S \) and \(x \leq \sup T \), so \(x \leq \min \{ \sup S, \sup T \} \), and therefore \(\sup S \cap T \leq \min \{ \sup S, \sup T \} \).

(b) For a non-empty set \(A \), \(\sup A \neq -\infty \), so it suffices to consider when the suprema become positive infinity. Suppose \(\sup S = \infty \). Then \(S \) is not bounded
above. Hence \(S \cup T \) is not bounded above. Therefore \(\sup S \cup T = \infty \) and the identity still holds.

For the second identity, if \(\sup S = \infty \), then \(\min\{\sup S, \sup T\} = \sup T \). Since \(\sup T \) is an upper bound for \(T \), it is also an upper bound for \(S \cap T \), and hence the identity still holds.

The same arguments can be applied if \(\sup T = \infty \).

(c) Consider \(S = \{1, 3\} \) and \(T = \{1, 2\} \). Then \(\sup S = 3 \) and \(\sup T = 2 \), so \(\min\{\sup S, \sup T\} = 2 \). However, \(S \cap T = \{1\} \) and so \(\sup S \cap T = 1 < 2 \).

4. Let \(\lim s_n = s \). Since \(s_n \) converges, there exists an \(N_1 \) such that \(n > N_1 \) implies that \(|s_n - s| < 1 \). Hence \(-1 < s_n - s \) and \(s_n > s - 1 \).

Now pick \(M > 0 \). Since \(t_n \) diverges, there exists an \(N_2 \) such that

\[
t_n > 1 - s + M
\]

for all \(n > N_2 \). Hence for \(n > \max\{N_1, N_2\} \),

\[
s_n + t_n > (s - 1) + 1 - s + M = M
\]

and thus \(s_n + t_n \) diverges to infinity.

5. (a) Define \(a_N = \sup\{s_n : n > N\} \) and \(b_N = \sup\{t_n : n > N\} \). Now, for \(n > N \),

\[
s_n + t_n \leq a_N + b_N
\]

since \(a_N \) and \(b_N \) are upper bounds for \(s_n \) and \(t_n \). If \(c_N = \sup\{s_n + t_n : n > N\} \), then

\[
c_N \leq a_N + b_N.
\]

The sequences \((a_N) \), \((b_N) \), and \((c_N) \) are non-increasing. Suppose that \(\lim c_N > \lim a_N + \lim b_N \). Then \(\lim c_N = \lim a_N + \lim b_N + \epsilon \) for some \(\epsilon > 0 \), so there exist \(K_1 \) and \(K_2 \) such that if \(k > K_1 \)

\[
ak < \lim a_N + \frac{\epsilon}{3}
\]

and if \(k > K_2 \) then

\[
bk < \lim b_N + \frac{\epsilon}{3}.
\]

Now for all \(k > \max\{K_1, K_2\} \),

\[
c_k \leq a_k + b_k
\]

\[
< \left(\lim a_N + \frac{\epsilon}{3} \right) + \left(\lim b_N + \frac{\epsilon}{3} \right)
\]

\[
< (\lim a_N + \lim b_N + \epsilon) - \frac{\epsilon}{3} = \lim c_N - \frac{\epsilon}{3}.
\]

But then \(|c_k - \lim c_N| > \frac{\epsilon}{3} \) for all \(k > \max\{K_1, K_2\} \), so \(c_k \) does not converge to \(\lim c_N \) which is a contradiction. Hence \(\lim c_N \leq \lim a_N + \lim b_N \), and hence \(\lim \sup s_n + t_n \leq \lim \sup s_n + \lim \sup t_n \).
(b) Suppose
\[s_n = \begin{cases}
1 & \text{if } n \text{ is even} \\
0 & \text{if } n \text{ is odd}
\end{cases} \]
and that
\[t_n = \begin{cases}
0 & \text{if } n \text{ is even} \\
1 & \text{if } n \text{ is odd}.
\end{cases} \]

Then \(\sup\{s_n : n > N\} \) and \(\sup\{t_n : n > N\} = 1 \) for all \(N \in \mathbb{N} \), and hence
\[
(\lim \sup s_n) \cdot (\lim \sup t_n) = 1 \cdot 1 = 1.
\]

However, \(s_n t_n = 0 \) for all \(n \), and thus \(\lim \sup(s_n t_n) = 0 \neq 1 \).

6. Suppose that \(a > b \). Then define \(\epsilon = a - b > 0 \). Then there exists an \(N_1 \) such that \(n > N_1 \) implies that \(|a_n - a| < \epsilon/2 \). Similarly there exists an \(N_2 \) such that \(n > N_2 \) implies that \(|b_n - b| < \epsilon/2 \). Now consider any \(k \) such that \(k > \max\{N_1, N_2\} \). Then \(|a_k - a| < \epsilon/2 \), and hence \(-\epsilon/2 < a_k - a \), so
\[
a_k > a - \frac{\epsilon}{2} = a - \frac{a - b}{2} = \frac{a + b}{2}.
\]

In addition, \(|b_k - b| < \epsilon/2 \), so \(b_k - b < \epsilon/2 \), and hence
\[
b_k < b + \frac{\epsilon}{2} = b + \frac{a - b}{2} = \frac{a + b}{2}.
\]

Combining these two inequalities shows that \(a_k > b_k \), which is a contradiction. Thus \(a \leq b \).

7. Since the lower limit of \(A \) is an open interval, it does not have a minimum, however \(\inf A = 0 \). Since \(A \) is not bounded above, it does not have a maximum. \(\sup A = \infty \) for sets not bounded above.

Since \(B \) has no smallest element, the minimum does not exist. However, since the fractions become arbitrarily close to 0, \(\inf B = 0 \). The maximum is given by \(\max B = 1/2 \), attained for the case when \(n = 1 \), and hence \(\sup B = \max B = 1/2 \).

8. For the first sequence, make use of the root test where \(a_n = 6^n/n^n \). Then
\[
(a_n)^{1/n} = \frac{6}{n}
\]
which converges to zero as \(n \to \infty \). Hence \(\sum 6^n/n^n \) converges. For the second sequence, since \(n + 1/2 \leq 2n \) for all \(n \in \mathbb{N} \), then
\[
\frac{1}{n + 1/2} \geq \frac{1}{2n}
\]
for all \(n \in \mathbb{N} \). Since \(\sum \frac{1}{n} \) diverges, so does \(\sum \frac{1}{2n} \), and hence by the comparison test, \(\sum 1/(n + 1/2) \) does also.
9. Choose an element \(t \in T \). Then either

 - \(t \in S \). Hence \(t \leq \sup S \).

 - There exists \(s \in S \) such that \(s = -t \). Hence \(s \geq \inf S \), and therefore \(t \leq -\inf S \).

Thus either \(t \leq \sup S \) or \(t \leq -\inf S \) so \(t \leq \max\{\sup S, -\inf S\} \). Hence it is an upper bound.

Now suppose that \(l \) is an upper bound for \(T \). Then \(l \geq t \) for all elements \(t \in T \). Hence \(l \geq |s| \) for all elements \(s \in S \), and thus

\[
-1 \leq s \leq 1
\]

for all elements in \(s \), from which the following two deductions can be made:

 - Since \(s \leq l \) for all \(s \), then \(l \geq \sup S \) since \(\sup S \) is the least upper bound for \(S \).

 - Since \(-1 \leq s \) for all \(s \), then \(-1 \leq \inf S \) since \(\inf S \) is the greatest lower bound for \(S \). Hence \(l \geq -\inf S \).

These two results show that \(l \geq \max\{\sup S, -\inf S\} \). Hence \(\max\{\sup S, -\inf S\} \) is an upper bound for \(T \) and it is the least upper bound, so it must be \(\sup T \).

10. Define \(v_N = \sup\{s_n : n > N\} \). There are two cases:

 - \(\limsup t_n = -q \) for some \(q > 0 \). Then there exists a \(K_1 \) such that \(|v_N - (-q)| < q/2 \) for all \(N > K_1 \). Hence \(v_{K_1+1} < (-q) + (q/2) = -q/2 \), and thus \(t_n < -q/2 \) for all \(n > K_1 + 1 \). For this case, define \(\lambda = -q/2 \).

 - \(\limsup t_n = -\infty \). Then there exists a \(K_1 \) such that \(v_N < -1 \) for all \(N > K_1 \). Hence \(v_{K_1+1} < -1 \), and thus \(t_n < -1 \) for all \(n > K_1 + 1 \). For this case, define \(\lambda = -1 \).

Now consider the sequence \(s_nt_n \). Pick \(M < 0 \). Then since \(\lim s_n = \infty \), there exists a \(K_2 \) such that \(n > K_2 \) implies that \(s_n > M/\lambda \).

Now suppose \(n > \max\{K_1 + 1, K_2\} \). Then \(s_n > M/\lambda \) and \(t_n < \lambda \), so \(s_nt_n < M \). This is true for any \(M < 0 \), so \(\lim s_nt_n = -\infty \).