11.1 Finite Automata

Motivation:

- TMs without a tape: maybe we can at least fully understand such a simple model?
- Algorithms (e.g. string matching)
- Computing with very limited memory
- Formal verification of distributed protocols,
- Hardware and circuit design

Example: Home Stereo

- \(P \) = power button (ON/OFF)
- \(S \) = source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode.

A computational problem: does a given a sequence of button presses \(w \in \{P,S\}^* \) leave the system with the radio on?

The Home Stereo DFA
Formal Definition of a DFA

- A DFA M is a 5-Tuple $(Q, \Sigma, \delta, q_0, F)$

 Q: Finite set of states
 Σ: Alphabet
 δ: “Transition function”, $Q \times \Sigma \rightarrow Q$
 q_0: Start state, $q_0 \in Q$
 F: Accept (or final) states, $F \subseteq Q$

- If $\delta(p, \sigma) = q$,
 then if M is in state p and reads symbol $\sigma \in \Sigma$
 then M enters state q (while moving to next input symbol)

Another Visualization

M accepts string x if

- After starting M in the start[initial] state with head on first square,
- when all of x has been read,
- M winds up in a final state.
Example

Bounded Counting: A DFA that recognizes \(\{ x : x \text{ has an even # of } a\text{'s and an odd # of } b\text{'s} \} \)

Transition function \(\delta \):

<table>
<thead>
<tr>
<th></th>
<th>(a)</th>
<th>(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(q_0)</td>
<td>(q_1)</td>
<td>(q_2)</td>
</tr>
<tr>
<td>(q_1)</td>
<td>(q_0)</td>
<td>(q_3)</td>
</tr>
<tr>
<td>(q_2)</td>
<td>(q_3)</td>
<td>(q_0)</td>
</tr>
<tr>
<td>(q_3)</td>
<td>(q_2)</td>
<td>(q_1)</td>
</tr>
</tbody>
</table>

i.e. \(\delta(q_0, a) = q_1 \), etc.

\(\times \) = start state \(\circ \) = final state

\(Q = \{ q_0, q_1, q_2, q_3 \} \quad \Sigma = \{ a, b \} \quad F = \{ q_2 \} \)

Formal Definition of Computation

\(M = (Q, \Sigma, \delta, q_0, F) \) accepts \(w = w_1w_2 \cdots w_n \in \Sigma^* \) (where each \(w_i \in \Sigma \)) if there exist \(r_0, \ldots, r_n \in Q \) such that

1. \(r_0 = q_0 \).
2. \(\delta(r_i, w_{i+1}) = r_{i+1} \) for each \(i = 0, \ldots, n - 1 \), and
3. \(r_n \in F \).

The language recognized (or accepted) by \(M \), denoted \(L(M) \), is the set of all strings accepted by \(M \).
Another Example

- Pattern Recognition: A DFA that accepts \(\{ x : x \text{ has } aab \text{ as a substring} \} \).

Another Example, To Do On Your Own

- Pattern Recognition: A DFA that accepts \(\{ x : x \text{ has } ababa \text{ as a substring} \} \).

Using DFAs for Pattern Recognition

Problem: given a pattern \(w \in \Sigma^* \) of length \(m \) and a string \(x \in \Sigma^* \) of length \(n \), decide whether \(w \) is a substring of \(x \).

Algorithm:

1. Construct a DFA \(M \) that accepts \(L_w = \{ x \in \Sigma^* : w \text{ is a substring of } x \} \).
 - States are \(Q = \{ 0, 1, \ldots, m \} \). State \(q \) represents:
 - Transitions: \(\delta(q, \sigma) = \)
 - Time to construct \(M \) (naively): \(O(m^3 \cdot |\Sigma|) \).

2. Run \(M \) on \(x \).
 - Time: \(O(n) \)

The running time can be improved to \(O(m + n) \), using an appropriate implicit representation of the DFA. Widely used in practice!
Characterizing the Power of Finite Automata

Def: A language $L \subseteq \Sigma^*$ is *regular* iff there is a DFA M such that $L(M) = L$. REG denotes the class of regular languages.

The terminology “regular” comes from an equivalent characterization in terms of *regular expressions* (which we won’t cover in lecture, but possibly will on a problem set). Note that $\text{REG} \subseteq \text{TIME}_{TM}(n)$; it also can be shown that $\text{REG} \subseteq \text{CF}$. Unlike classes associated with universal models (like TMs and Word-RAMs), we have a fairly complete understanding of the class of regular languages. In particular,

Myhill-Nerode Theorem: A language $L \subseteq \Sigma^*$ is regular iff there are only finitely many equivalence classes under the following equivalence relation \sim_L on Σ^*: $x \sim_L y$ iff for all strings $z \in \Sigma^*$, we have $xz \in L \iff yz \in L$.

Moreover, the minimum number of states in a DFA for L is exactly the number of equivalence classes under \sim_L.

(Exercises: refresh your memory on the definition of equivalence relations and equivalence classes.)

Proof: \Rightarrow.

\Leftarrow. Suppose \sim_L has finitely many equivalence classes, where we write $[x]_L$ for the equivalence class containing x. We construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ as follows:

- Q is the set of equivalence classes under \sim_L.
- $q_0 = [\varepsilon]_L$.
- $F = \{ [x]_L : x \in L \}$.
- $\delta([x]_L, \sigma) = [x\sigma]_L$. (Note that this is well-defined: if $x \sim_L y$, then $x\sigma \sim_L y\sigma$, so the choice of the representative x of the equivalence class does not affect the result.)

By induction on $|x|$, it can be shown that running M on x leads to state $[x]_L$, and hence we accept exactly the strings in L. □
Proving that languages are nonregular. To show that L is nonregular, we only need to exhibit an infinite set of strings that are all inequivalent under \sim_L. Some examples follow:

- $L = \{a^n b^n : n \geq 0\}$. Claim: $\varepsilon, a, a^2, a^3, a^4, \ldots$ are all inequivalent under \sim_L.

- $L = \{w \in \Sigma^* : |w| = 2^n \text{ for some } n \geq 0\}$. Claim: $\varepsilon, a, a^2, a^3, a^4, \ldots$ are all inequivalent under \sim_L. Suppose $a^i \sim_L a^j$ for some $i > j$. Let k be any power of 2 larger than i and j. Then $a^i \cdot a^{k-j} \in L$, so $a^i \cdot a^{k-j} \in L$ and hence $k + i - j$ is a power of 2. But $2k$ is the next larger power of 2 after k. $\Rightarrow \Leftarrow$.

- $L = \{w \in \Sigma^* : w = w^R\}$ (palindromes).