NP-Completeness

The World if $P \neq NP$?

Q: If $P \neq NP$, can we conclude anything about any specific problems?

Idea: Try to find a “hardest” NP language.

– Want $L \in NP$ such that $L \in P$ iff every NP language is in P.

Reducibility

Informally, we say that a computational problem A reduces to a computational problem B (written $A \leq B$) if A can be solved (efficiently) by solving B. Thus, an (efficient) algorithm for B implies an (efficient) algorithm for A.

We have already seen many examples:

- CONTEXT-FREE RECOGNITION \leq MATRIX MULTIPLICATION (HW3)
- MAX-FLOW \leq LINEAR PROGRAMMING
- MATCHING \leq MAX-FLOW
- ZERO-SUM GAMES \leq LINEAR PROGRAMMING
- $L_{\text{fact}} \leq$ FACTORING (HW4)
- FACTORING \leq L_{fact} (HW4)

As the last bullet shows, reductions are useful not only for showing that problems can be solved efficiently, but also for giving evidence that problems are hard: under the widely believed conjecture that FACTORING has no polynomial-time algorithm, we can deduce that $L_{\text{fact}} \notin P$ (and hence $P \neq NP$). Hence “$A \leq B$” can be interpreted equivalently as saying “A is at least as easy as B” or “B is at least as hard as A”.

14-1
Polynomial-Time Mapping Reductions

There are many forms of reducibility, and which one is most suitable depends on what kind of computational phenomena we are interested in studying. A very general notion is that of a Turing reduction (aka oracle reduction), where we say that \(A \leq B \) if there is an algorithm that solves \(A \) given any “black box” that solves \(B \). (For example, we add a Word-RAM instruction that will provide a solution to an instance of \(B \) written in memory in one time step. It’s like programming with a library for which we have no idea how the library functions themselves are implemented (or even if they can be implemented at all).) The polynomial-time analogue of Turing reductions are known as Cook reductions, and these are what we used in the reductions between FACTORING and \(L_{\text{fact}} \).

However, for reductions between languages, it is often convenient to work with the following more restrictive notion of reduction (known as polynomial-time mapping reductions or Karp reductions):

Def: \(L_1 \leq_p L_2 \) iff there is a **polynomial-time** computable function \(f : \Sigma_1^* \rightarrow \Sigma_2^* \) s.t. for every \(x \in \Sigma_1^* \), \(x \in L \iff f(x) \in L_2 \).

- \(x \in L_1 \Rightarrow f(x) \in L_2 \)
- \(x \notin L_1 \Rightarrow f(x) \notin L_2 \)
- \(f \) computable in polynomial time

Proposition: If \(L_1 \leq_p L_2 \) and \(L_2 \in P \), then \(L_1 \in P \).

Proof:
NP-Completeness

Def: L is NP-complete iff

1. $L \in \text{NP}$ and
2. For every $L' \in \text{NP}$, we have $L' \leq_p L$. (“L is NP-hard”)

Prop: Let L be any NP-complete language. Then $P = \text{NP}$ if and only if $L \in P$.

Cook–Levin Theorem

Stephen Cook 1971, Leonid Levin 1973

Theorem: SAT (Boolean satisfiability) is NP-complete.

Proof: Need to show that every language in NP reduces to SAT (!) Proof next time.

More NP-complete problems

From now on we prove NP-completeness using:

Lemma: If we have the following

- L is in NP
- $L_0 \leq_p L$ for some NP-complete L_0

Then L is NP-complete.

Proof:
3-SAT

Def: A Boolean formula is in **3-CNF** if it is of the form \(C_1 \land C_2 \land \ldots \land C_n \), where each clause \(C_i \) is a disjunction ("or") of 3 literals:

\[
C_i = (C_{i1} \lor C_{i2} \lor C_{i3})
\]

where each literal \(C_{ij} \) is either a variable \(x \), or the negation of a variable, \(\neg x \) (sometimes written \(\overline{x} \)).

e.g. \((x \lor y \lor z) \land (\neg x \lor \neg u \lor w) \land (u \lor u \lor u)\)

3-SAT is the set of satisfiable 3-CNF formulas.

Theorem: 3-SAT is NP-complete

Proof: We show that SAT \(\leq_p \) 3-SAT.

1. Given an arbitrary Boolean formula, e.g.

 \[
 F = (\neg((x \lor \neg y) \land (z \lor w)) \lor \neg x).
 \]

2. Number the operators.

3. Select a new variable \(a_i \) for each operator.

 The variable \(a_i \) is supposed to mean “the subformula rooted at operator \(i \) is true.”

4. Write a formula \(F_1 \) stating the relation between each subformula and its children subformulas.

 For example, where

 \[
 F = (\neg((x \lor \neg y) \land (z \lor w)) \lor \neg x),
 \]

 \[
 F_1 = \left(\begin{array}{c}
 (a_3 \equiv \neg y) \land (a_7 \equiv \neg x) \\
 \land (a_2 \equiv x \lor a_3) \land (a_1 \equiv \neg a_4) \\
 \land (a_5 \equiv z \lor w) \land (a_6 \equiv a_1 \lor a_7) \\
 \land (a_4 \equiv a_2 \land a_5)
 \end{array} \right)
 \]
5. Let k be the number of the main operator/subformula of F.

(Note: $k = 6$ in the example)

Claim: $a_k \land F_1$ is satisfiable iff F is satisfiable.

Proof:

6. Write F_1 in 3-CNF to obtain F_2.

Fact: Every function $f : \{0, 1\}^k \rightarrow \{0, 1\}$ can be written as a k-CNF and as a k-DNF (OR of ANDs). [albeit with possibly 2^k clauses]

Proof:

7. Output of the reduction: $a_k \land F_2$.

Q: Does this prove that every Boolean formula can be converted to 3-CNF?

In contrast, 2-SAT \in P

Method (resolution):

1. If x and $\neg x$ are both clauses, then not satisfiable

 e.g. $(x) \land (z \lor y) \land (\neg x)$

2. If $(x \lor y) \land (\neg y \lor z)$ are both clauses, add clause $(x \lor z)$ (which is implied).

3. Repeat. If no contradiction emerges \Rightarrow satisfiable.

$O(n^2)$ repetitions of step 2 since only 2 literals/clause.

Proof of correctness: omitted
Vertex Cover (VC)

- **Instance:**
 - a graph, e.g.
 - a number \(k \) (e.g. 4)

- **Question:** Is there a set of \(k \) vertices that "cover" the graph, i.e., include at least one endpoint of every edge?

VC is NP-complete

- VC is in NP:
- 3-SAT \(\leq_P \) VC:
 - Let \(F \) be a 3-CNF formula with clauses \(C_1, \ldots, C_m \), variables \(x_1, \ldots, x_n \).
 - We construct a graph \(G_F \) and a number \(N_F \) such that:

 \[
 G_F \text{ has a size } N_F \text{ vertex cover iff } F \text{ is satisfiable}
 \]

 E.g. \(F = (x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor \neg x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \)
– $G_F = \text{one dumbbell for each variable, one triangle for each clause, and corner } j \text{ of triangle } i \text{ is connected to the vertex representing the } j\text{th literal in } C_j.$

– $N_F = 2m + n = 2 \text{ (# clauses)} + \text{(# variables)}.$

\Rightarrow 1 vertex from each dumbbell and 2 from each triangle.

– If F is satisfiable, then there is a cover of size N_F:

– If there is a cover of size N_F, then F is satisfiable:

\begin{itemize}
 \item \textbf{Instance:}
 \begin{itemize}
 \item a graph, e.g.
 \item a number k (e.g. 4)
 \end{itemize}

 \item \textbf{Question:} Is there a clique of size k, i.e., a set of k vertices such that there is an edge between each pair?

 \item \textbf{Easy to see that CLIQUE} $\in \text{NP}.$
\end{itemize}
VC \leq_p CLIQUE

If G is any graph, let Gc be the graph with the same vertices such that:

there is an edge between x and y in Gc

iff

there is no edge between x and y in G

e.g.

• Claim: G has a k-cover iff Gc has an (n − k)-clique, where n is the number of vertices in G.

(So the mapping (G, k) \mapsto (Gc, n − k) is a reduction of VC to CLIQUE.)

Proof:

INTEGER LINEAR PROGRAMMING

An integer linear program is

• A set of variables x1, . . . , xn which must take integer values.

• A set of linear inequalities:

\[a_{i1}x_1 + a_{i2}x_2 + \ldots + a_{in}x_n \leq c_i \quad [i = 1, \ldots, m] \]

e.g. \[x_1 - 2x_2 + x_4 \leq 7 \]

\[x_1 \geq 0 \quad [-x_1 \leq 0] \]

\[x_4 + x_1 \leq 3 \]
ILP = the set of integer linear programs for which there are values for the variables that simultaneously satisfy all the inequalities.

ILP is NP-complete

ILP ∈ NP. (Not obvious! Need a little math to prove it. Proof omitted.)

ILP is NP-hard: by reduction from 3-SAT (3-SAT ≤ₚ ILP). Given 3-CNF Formula F, construct following ILP P as follows:

Recall: **LINEAR PROGRAMMING** where the variables can take *real* values is known to be in P.

More NP-complete/NP-hard Problems

- **HAMILTONIAN CIRCUIT** (and hence **TRAVELLING SALESMAN PROBLEM**) (see Sipser text for related problems)
- **SCHEDULING**
- **CIRCUIT MINIMIZATION**
- **SHORT PROOF**
- **NASH EQUILIBRIUM WITH MAXIMUM PAYOFF**
- **PROTEIN FOLDING**
- :
- See book by Garey & Johnson for hundreds more.