1 RAM

A word-RAM consists of:

- A fixed set of instructions P_1, \ldots, P_q. Allowed instructions are:
 - Modular arithmetic and integer division on registers; the standard model for a RAM machine
does not have negative numbers, but you can verify that allowing signed integers doesn’t change
the power of the model.
 - Bitwise operations on registers.
 - Loading a constant into a register.
 - Transferring values between a register and a word in main memory (as addressed by another
register).
 - Conditional GOTO.
 - MALLOC – increase the size S of main memory by 1. This also increments the word size if the
current word size is too small to address all of main memory.
 - HALT.
- The problem counter $l \in \{1, \ldots, q\}$, telling us where we are in the program. Except for GOTO
statements, the counter increments after each instruction is executed.
- The space usage S, which starts at the size of the input.
- The word size w; the initial word size is $\lceil \max(n + 1, k + 1) \rceil$, where n is the length of the input and
k is the maximum constant appearing in the program or input.
- A constant number of registers $R[0], \ldots, R[r - 1]$, each of which is a w-bit word.
- Main memory $M[0], \ldots, M[S - 1]$, each of which is a w-bit word.

The tuple (l, S, w, R, M) gives the configuration of the word-RAM.

We say that a word-RAM solves a computational problem $f : \Sigma^* \rightarrow 2^{\mathbb{N}^*}$ if the machine which starts with
input x halts with some output in $f(x)$ as the set of characters in $M[0], \ldots, M[R[0] - 1]$.

As we saw with Turing Machines, there are many adjustments we can make to a model which make it
easier to reason about without significantly changing its power. Here’s one for word-RAMs:

Exercise. We define a 2-D word-RAM model: Suppose that main memory, instead of being represented by
a one-dimensional array of size S, is represented by a two-dimensional array of size $S \times S$. Consequently,
saves or loads from main memory require addressing it using two registers; as before, MALLOC increases
S by 1 (and consequently the size of memory by $2S + 1$).

Prove that a computational problem can be solved by a 2-D word-RAM model in polynomial time if and
only if it can be solved by regular word-RAM model in polynomial time. In this problem, provide a formal
description of how to convert between the two models.
2 Turing Machines

Formally, a Turing machines is a 6-tuple $M = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{halt}})$, where

- Q is a finite set of states.
 - This means you can use your states to do finite counting (e.g. modulo 2), but not counting to arbitrarily large numbers.
 - Sometimes, instead of having a single q_{halt} state, people will talk about having a q_{reject} and q_{accept} state.
- Σ is the input alphabet.
- Γ is the tape alphabet, with $\Sigma \subset \Gamma$ and $\sqcup \in \Gamma - \Sigma$.
- $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function.
 - As we saw in class, we can simulate a multiple tape Turing machine with a single tape; in this case, if we have k tapes, the transition function is $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$.
 - We’ll often also allow an S for staying still; this does not change the power of the TM.
- $q_0, q_{\text{accept}}, q_{\text{reject}} \in Q$ are the start state, accept state, and reject state, respectively.

A Turing machine configuration is a string $uqv \in \Gamma^*Q\Gamma^*$ that encodes (i) the state q of M, (ii) the tape contents uv ignoring trailing blanks, and (iii) the location of the head within the tape. The starting configuration is q_0x.

We say that a Turing Machine solves a computational problem $f : \Sigma^* \to 2^{(\Gamma/\sqcup)^*}$ if the Turing machine which starts with input x halts with some output in $f(x)$ as the set of characters before the first \sqcup.

The extended Church-Turing Thesis says that every reasonable model of computation can be simulated on a Turing machine with only a polynomial slowdown.

Exercise. Give the state diagram for a Turing machine which converts unary to binary (that is, given the input 1^x, it should return the binary representation of x).

Often, when we talk about computational problems, we talk about decision problems, where the output is in $\{0, 1\}$; this is the same idea as deciding whether the given string is in some language $L \in \Sigma^*$.

However, in many cases the problem of finding a solution is not necessarily more “difficult” than the problem of determining whether there exists one. You’re asked to prove a few of these on your homework; we'll look at one more of them here.
Exercise. Show that there is a polynomial-time algorithm for 3-Satisfiability (given a boolean formula in 3-CNF form, determine whether there exists a satisfying assignment) if and only if the computational problem of finding a satisfying assignment (or returning nothing if none exists) is in P.

For this problem, you can use high-level algorithm descriptions.