11.1 Finite Automata

Motivation:

- TMs without a tape: maybe we can at least fully understand such a simple model?
- Algorithms (e.g. string matching)
- Computing with very limited memory
- Formal verification of distributed protocols,
- Hardware and circuit design

Example: Home Stereo

- \(P = \) power button (ON/OFF)
- \(S = \) source button (CD/Radio/TV), only works when stereo is ON, but source remembered when stereo is OFF.
- Starts OFF, in CD mode.
- A computational problem: does a given a sequence of button presses \(w \in \{P,S\}^* \) leave the system with the radio on?

The Home Stereo DFA
Formal Definition of a DFA

- A DFA M is a 5-Tuple $(Q, \Sigma, \delta, q_0, F)$

 Q: Finite set of states

 Σ: Alphabet

 δ: “Transition function”, $Q \times \Sigma \rightarrow Q$

 q_0: Start state, $q_0 \in Q$

 F: Accept (or final) states, $F \subseteq Q$

- If $\delta(p, \sigma) = q$,

 then if M is in state p and reads symbol $\sigma \in \Sigma$

 then M enters state q (while moving to next input symbol)

Another Visualization

M accepts string x if

- After starting M in the start[initial] state with head on first square,

- when all of x has been read,

- M winds up in a final state.
Example

Bounded Counting: A DFA that recognizes \(\{ x : x \text{ has an even # of } a\text{'s and an odd # of } b\text{'s} \} \)

Transition function \(\delta \):

\[
\begin{array}{c|cc}
 & a & b \\
\hline
q_0 & q_1 & q_2 \\
q_1 & q_0 & q_3 \\
q_2 & q_3 & q_0 \\
q_3 & q_2 & q_1 \\
\end{array}
\]

i.e. \(\delta(q_0, a) = q_1 \), etc.

\(\bigcirc \) = start state \(\bigcirc \) = final state

\[Q = \{ q_0, q_1, q_2, q_3 \} \quad \Sigma = \{ a, b \} \quad F = \{ q_2 \} \]

Formal Definition of Computation

\[M = (Q, \Sigma, \delta, q_0, F) \text{ accepts } w = w_1w_2 \cdots w_n \in \Sigma^* \text{ (where each } w_i \in \Sigma) \text{ if there exist } r_0, \ldots, r_n \in Q \text{ such that} \]

1. \(r_0 = q_0 \).
2. \(\delta(r_i, w_{i+1}) = r_{i+1} \) for each \(i = 0, \ldots, n - 1 \), and
3. \(r_n \in F \).

The language recognized (or accepted) by \(M \), denoted \(L(M) \), is the set of all strings accepted by \(M \).
Another Example, To Do On Your Own

- **Pattern Recognition**: A DFA that accepts \(\{ x : x \text{ has } aab \text{ as a substring} \} \).

Another Example, To Do On Your Own

- **Pattern Recognition**: A DFA that accepts \(\{ x : x \text{ has } ababa \text{ as a substring} \} \).

Using DFAs for Pattern Recognition

Problem: given a pattern \(w \in \Sigma^* \) of length \(m \) and a string \(x \in \Sigma^* \) of length \(n \), decide whether \(w \) is a substring of \(x \).

Algorithm:

1. Construct a DFA \(M \) that accepts \(L_w = \{ x \in \Sigma^* : w \text{ is a substring of } x \} \).
 - States are \(Q = \{0, 1, \ldots, m\} \). State \(q \) represents:
 - Transitions: \(\delta(q, \sigma) = \)
 - Time to construct \(M \) (naively): \(O(m^3 \cdot |\Sigma|) \).

2. Run \(M \) on \(x \).
 - Time: \(O(n) \)

The running time can be improved to \(O(m + n) \), using an appropriate implicit representation of the DFA. Widely used in practice! (Look up the Knuth-Morris-Pratt algorithm.)
Characterizing the Power of Finite Automata

Def: A language $L \subseteq \Sigma^*$ is *regular* iff there is a DFA M such that $L(M) = L$. REG denotes the class of regular languages.

The terminology “regular” comes from an equivalent characterization in terms of *regular expressions* (which we won’t cover in lecture, but possibly will on a problem set). Note that $\text{REG} \subseteq \text{TIME}_{\text{TM}}(n)$; it also can be shown that $\text{REG} \subseteq \text{CF}$. Unlike classes associated with universal models (like TMs and Word-RAMs), we have a fairly complete understanding of the class of regular languages. In particular,

Myhill-Nerode Theorem: A language $L \subseteq \Sigma^*$ is regular iff there are only finitely many equivalence classes under the following equivalence relation \sim_L on Σ^*: $x \sim_L y$ iff for all strings $z \in \Sigma^*$, we have $xz \in L \iff yz \in L$. Moreover, the minimum number of states in a DFA for L is exactly the number of equivalence classes under \sim_L.

(Exercises: refresh your memory on the definition of equivalence relations and equivalence classes.)

Proof: \Rightarrow. Let $M = (Q, \Sigma, \delta, q_0, F)$ be a DFA such that $L(M) = L$. Note that if $x, y \in \Sigma^*$ drive M to the same state (starting from q_0), then for all $z \in \Sigma^*$, xz and yz drive M to the same state and hence both are in $L(M) = L$ or neither are in $L(M)$. Thus $x \sim_L y$. Hence the number of equivalence classes under \sim_L is at most $|Q|$.

\Leftarrow. Suppose \sim_L has finitely many equivalence classes, where we write $[x]_L$ for the equivalence class containing x. We construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ as follows:

- Q is the set of equivalence classes under \sim_L.
- $q_0 = [\epsilon]_L$.
- $F = \{[x]_L : x \in L\}$.
- $\delta([x]_L, \sigma) = [x\sigma]_L$. (Note that this is well-defined: if $x \sim_L y$, then $x\sigma \sim_L y\sigma$, so the choice of the representative x of the equivalence class does not affect the result.)

By induction on $|x|$, it can be shown that running M on x leads to state $[x]_L$, and hence we accept exactly the strings in L. \blacksquare
Proving that languages are nonregular. To show that L is nonregular, we only need to exhibit an infinite set of strings that are all inequivalent under \sim_L. Some examples follow:

- $L = \{a^n b^n : n \geq 0\}$. Exercise: prove that $\epsilon, a, a^2, a^3, a^4, \ldots$ are all pairwise inequivalent under \sim_L.

- $L = \{w \in \Sigma^* : |w| = 2^n \text{ for some } n \geq 0\}$. Claim: $\epsilon, a, a^2, a^3, a^4, \ldots$ are all inequivalent under \sim_L. Suppose $a^i \sim_L a^j$ for some $i > j$. Let k be any power of 2 larger than i and j. Then $a^i \cdot a^{k-j} \in L$, so $a^i \cdot a^{k-j} \in L$ and hence $k + i - j$ is a power of 2. But $2k$ is the next larger power of 2 after k. $\Rightarrow \Leftarrow$.

- $L = \{w \in \Sigma^* : w = w^R\}$ (palindromes). Exercise: prove that $a, a^2 b, a^3 b, \ldots$ are pairwise inequivalent.