Problem Set 1

Due: 11:59pm, Friday, September 9th

See homework submission instructions at http://seas.harvard.edu/~cs125/fall16/schedule.htm

Problem 1

Indicate for each pair of expressions \((A, B)\) in the table below the relationship between \(A\) and \(B\). Your answer should be in the form of a table with a “yes” or “no” written in each box. For example, if \(A\) is \(O(B)\), then you should put a “yes” in the first box. If the base of a logarithm is not specified, you should assume it is base-2.

<table>
<thead>
<tr>
<th>(A)</th>
<th>(B)</th>
<th>(O)</th>
<th>(o)</th>
<th>(\Omega)</th>
<th>(\omega)</th>
<th>(\Theta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\log_2 n)</td>
<td>(\log_3 n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log \log n)</td>
<td>(\sqrt{\log n})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2^{\log n})</td>
<td>(n^2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n^2 2^n)</td>
<td>(3^n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n!)</td>
<td>(n^n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\log(n!))</td>
<td>(\log(n^n))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((n^2)!)</td>
<td>(n^n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>((n!)^2)</td>
<td>(n^n)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Problem 2

In many applications of sorting, the input is not just a list of numbers to be sorted, but rather a list of items, each of which has a sort key \(k_i\) (which is a number) and a data payload \(d_i\) (which comes from an arbitrary set). The task is to sort the items according to the sort key. (This is like sorting a spreadsheet by a particular column.) Formally, given an input \((k_1, d_1), \ldots, (k_n, d_n)\) where each \(k_i \in \mathbb{N}\), a sorting algorithm should produce a sequence \((k'_1, d'_1), \ldots, (k'_n, d'_n)\) such that (1) \(k'_1 \leq k'_2 \leq \cdots \leq k'_n\), and (2) there is a permutation \(\pi\) of \([1, \ldots, n]\) such that for all \(i\), \((k'_i, d'_i) = (k_{\pi(i)}, d_{\pi(i)})\).

(a) (3 points) Show how to extend counting sort to solve the above task, sorting in time \(O(n + M)\) assuming all of the sort keys are in the range \([0, M]\). Your algorithm should work even if there are repetitions among the sort keys. You can assume that copying of data items \(d_i\) can be done in unit time.
(b) (3 points) Show how to ensure that your algorithm is *stable*, in the sense that it does not reorder items with the same sort key. Formally, if \(k_i = k_j \) for some \(i < j \), then \(\pi(i) < \pi(j) \).

(c) (4 points) Another sorting algorithm that can work in \(o(n \log n) \) time is Radix Sort. Radix sort works as follows, on numbers represented in binary.

i. Start with the last \(b \) bits of the numbers. Use your version of counting sort from part (b) to sort the numbers using the last \(b \) bits as the sort key.

ii. Continue from right to left looking at the next \(b \) bits of the numbers, and sort based on those bits along using counting sort.

iii. Continue this repeated sorting including through the first \(b \) bits.

Argue that if you use \(b = \log_2 n \) and you are sorting \(n \) numbers in the range \([0, n^j]\) for some constant \(j \) that the total time taken by radix sort is \(O(n) \). (Here we assume, as we did in class, that our machine can manipulate numbers of \(\log_2 n \) bits with unit cost operations – so that, for example, it can cope with an array of \(n \) numbers.) As part of your proof, explain why you need the intermediate sorting steps to be stable.

Problem 3

In class we showed how to speed up integer multiplication via a divide-and-conquer approach: equipartitioning the digits of each of \(x \) and \(y \) into two sets, then doing three recursive multiplications followed by some insertions and subtractions (Karatsuba’s algorithm). The overall runtime was \(O(n \log_3^3) \). In this problem we will develop a similar, but faster, approach.

In order to speed up integer multiplication, we will first take a slight detour. Let us first consider the problem of solving a system of \(n \) linear equations with \(n \) variables \(x_0, \ldots, x_{n-1} \). Thus the input is \(n^2 + n \) numbers \(\{a_{i,j}\} \) for \(0 \leq i \leq n - 1 \) and \(0 \leq j \leq n \). These represent the \(n \) equations \(a_{i,0}x_0 + \cdots + a_{i,n-1}x_{n-1} + a_{i,n} = 0 \) for \(0 \leq i \leq n - 1 \). Consider the following pseudocode for a function \(\text{SOLVE()} \), which solves for the \(n \) variables assuming that there is a unique solution. The input is a doubly-indexed array \(A \) with \(A[i][j] \) representing \(a_{i,j} \) above. Below, we sometimes abuse notation and think of \(A[i] \) as the vector \((a_{i,0}, a_{i,1}, \ldots, a_{i,n}) \).
Algorithm `solve(A[0..n-1][0..n])`: // coefficients for `n` equations, `n` variables

1. if `n = 1`: return `(-A[0][1]/A[0][0])`

 // base case, `n = 1`, corresponds to `a_{0,0}x_0 + a_{0,1} = 0`

2. let `i` be the first index with `A[i][0]` ≠ 0; swap `A[i]` with `A[0]`

3. `A[0] ← A[0]/A[0][0]`

 // zero out the coefficient of `x_0` in every equation but the 0th one

4. for `i = 1, . . . , n`:

 // recursively solve `n−1` equations in `n−1` variables

5. `(x_1, . . . , x_n−1) ← solve(A[1..n−1][1..n])`

6. `x_0 ← −A[0][n]− \sum_{j=1}^{n−1} x_j·A[0][j]`

7. return `(x_0, . . . , x_{n−1})`

(a) (2 points) Let `T(n)` denote the worst case running time of `solve()` on `n` equations over `n` variables. Assume all basic arithmetic operations (addition, subtraction, division, and multiplication) are constant time. Write a recurrence for `T(n)` and solve it.

(b) (2 points) Now let us not assume arithmetic operations are unit cost. To implement `solve()`, we maintain all intermediate computations explicitly as fractions, storing numerators and denominators. Suppose `a_{i,j}` for `0 \leq i, j < n` are `L`-digit integers, and the `a_{i,n}` are each `R` digits. Prove that there exists a function `f : \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}` such that if one carried out all arithmetic operations in `solve()` exactly by storing fractions explicitly as (numerator, denominator) pairs, then no intermediate numerators or denominators of `A[i][0..n-1]` values or denominators of `A[i][n]` values would ever require more than `f(n, L)` digits, and no intermediate numerators of `A[i][n]` values would ever require more than `f(n, L) · R` digits, for any `A` in any level of recursion. Here \(\mathbb{N} \) is the set of natural numbers. Showing the existence of any such `f` is sufficient for full credit — you do not have to find an optimally slow-growing `f`. Conclude a bound on the running time of `solve()` in terms of `f, n, L, R`.

(c) (4 points) In this problem part we will finally develop a method faster than Karatsuba’s algorithm for integer multiplication. Suppose we want to multiply two `n`-digit positive integers `w, y`. If `n = 1`, we simply output the answer. Otherwise, we pad `w, y` with leading zeroes to make `n` a multiple of 3. Then we write `w = p_w(10^{n/3})` and `y = p_y(10^{n/3})`, where `p_w(z)` is the polynomial `w_{hi}· z^2 + w_{mid}· z + w_{lo}`, and similarly for `p_y`. Here each of `w_{hi}, w_{mid}, w_{lo}` have `n/3` digits. For example, if `w = 140712` then `w_{hi} = 14`, `w_{mid} = 7`, `w_{lo} = 12`. Show how to use `p_w, p_y, and solve()` to develop an algorithm for integer multiplication faster than Karatsuba’s algorithm, and prove a bound on the running time of your method. You may use the result of part (b) even if you didn’t solve it. Not for credit: what if you tried to break `w, y` into `k > 3` parts each?

You may take for granted the fact that for any `d \geq 1`, for any distinct reals `z_0, . . . , z_d`, and for any (not necessarily distinct) `m_0, . . . , m_d`, the set of `d + 1` linear equations
\[m_j + \sum_{i=0}^{d} x_i z_j^i = 0 \] has a unique solution. In other words, there is a unique degree-\(d\) polynomial interpolating given values \(-m_j\) for any \(d+1\) distinct evaluation points \(z_j\).

Problem 4

It is known that every integer \(n > 1\) can be uniquely factored as a product of primes. For example, \(4 = 2 \times 2\), \(6 = 2 \times 3\), and \(90 = 2 \times 3 \times 3 \times 5\). Let \(p(n)\) be the number of distinct prime divisors of \(n\), so \(p(6) = 2\) but \(p(4) = 1\).

(a) (2 points) Show that \(p(n) = O(\log n)\).

(b) (4 points) Show that \(p(n) = O\left(\frac{\log n}{\log \log n}\right)\).

(c) (4 points) It is a fact, which you may assume without proof, that there are \(\Theta(t/\log t)\) primes between 1 and \(t\). Use this fact to show that it is not true that \(p(n) = o\left(\frac{\log n}{\log \log n}\right)\).

Problem 5 (Programming Problem)

Solve “ZOO” on the programming server https://cs125.seas.harvard.edu (under “Problem Set 1”).