1 NP-completeness

We mentioned in class that $HAMPATH = \{\langle G, s, t \rangle : G$ has a Hamiltonian path from s to $t\}$ is NP-complete, where s, t are two vertices in a directed graph G, and a Hamiltonian path is a path which visits each vertex exactly once. Consider the undirected version

$UHAMPATH = \{\langle G, s, t \rangle : G$ has a Hamiltonian path from s to t, G is undirected\}.

Exercise. Show that $UHAMPATH$ is NP-complete.

Solution.
It is in NP since the Hamiltonian path itself can serve as the certificate.

To show that it is NP-hard, we reduce from $HAMPATH$. Suppose G, s, t are the inputs for $HAMPATH$. We transform to an input G', s', t' for $UHAMPATH$ as follows via a Karp reduction. Each vertex v in G other than s, t is transformed into three vertices v_{in}, v_{mid}, v_{out} in G'. For s, we only create one vertex s_{out} in G', and for t we create t_{in}. For every $v \in G \setminus \{s, t\}$, we create edges (v_{in}, v_{mid}) and (v_{mid}, v_{out}) in G'. Also if (u, v) is an edge in G, we create the edge (v_{out}, v_{in}) in G'. Finally, we set $s' = s_{out}$ and $t' = t_{in}$.

We need only show that G has a Hamiltonian path from s to t iff G' has one from s' to t'. Suppose G has the desired Hamiltonian path $s = v_0, v_1, v_2, \ldots, v_N = t$. Then in G' we have the Hamiltonian path $s_{out}, (v_1)_{in}, (v_1)_{mid}, (v_1)_{out}, (v_2)_{in}, (v_2)_{mid}, (v_2)_{out}, \ldots, (v_{N-1})_{in}, (v_{N-1})_{mid}, (v_{N-1})_{out}, t_{in}$. Also if we have a Hamiltonian path from s' to t', it must leave s_{out} to some “in” vertex, then go to a “mid”, then “out” before going to the next vertex, etc. So it corresponds to a Hamiltonian path in G.

2 Consequences of $P = NP$ collapse beyond NP

It turns out that if $P = NP$, there are some problems which we do not believe to even be in NP which will collapse to P as a consequence. One of these is the circuit minimization problem. In this problem, we are given some Boolean circuit C on n inputs using NOT, AND, and OR gates, and we would like to decide whether there is a smaller circuit (in terms of number of gates) C' which computes the same exact function on the domain $\{0, 1\}^n$ as C.

Exercise. Prove that if $P = NP$, then circuit minimization is also in P.

Solution.
Let $A(\langle C \rangle, \langle C' \rangle, x)$ be a Boolean which outputs 1 iff the circuit described by $\langle C \rangle$ outputs the same value as the circuit described by $\langle C' \rangle$ on input x, and furthermore C' is a smaller circuit than C (else A outputs 0). Then for the circuit minimization language $L, \langle C \rangle \in L$ iff $\exists C' \forall x A(\langle C \rangle, \langle C' \rangle, x) = 1$.
Now, suppose $P = NP$. Define the language $L' = \{\langle C, C' \rangle : \forall x \ A(\langle C \rangle, \langle C' \rangle, x) = 1\}$. Now notice L' is in co-NP, and co-NP = NP since $P = NP$. So L' can be decided in polynomial time and thus is decided by some poly-time algorithm $V(\langle C \rangle, \langle C' \rangle)$. Now note $\langle C \rangle \in L'$ iff $\exists C' \ \langle C, C' \rangle \in L'$, which is the same as $\exists C' \ V(\langle C \rangle, \langle C' \rangle) = 1$. But this means L has a poly-time verifier V, where $\langle C' \rangle$ is serving as the witness, so $L \in NP$ using the verifier definition of NP. Thus $L \in P$.