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Abstract—The nonlinear transmission line is a structure where
short-duration pulses called electrical solitons can be created
and propagated. By combining, in a closed-loop topology, the
nonlinear line and a special amplifier that provides not only gain
but also mechanisms to tame inherently unruly soliton dynamics,
we recently constructed the first electrical soliton oscillator that
self-generates a stable, periodic train of electrical soliton pulses
(Ricketts et al., IEEE Trans. MTT, 2006). This paper starts with
a review of this recently introduced circuit concept, and then
reports on new contributions, i.e., further experimental studies of
the dynamics of the stable soliton oscillator and a CMOS proto-
type demonstrating the chip-scale operation of the stable soliton
oscillator. Finally, we go to the opposite end of the spectrum and
present a numerical study showing the possibilities that deliberate
promotions of the unruly soliton dynamics in the closed-loop
topology can produce chaotic signals.

Index Terms—Electrical soliton oscillators, electrical solitons,
chaos, integrated circuits, mode-locking, nonlinear transmission
lines, oscillators, pulse generation, solitons.

I. INTRODUCTION

SHORT-DURATION electrical pulses play important roles
in ultrafast time-domain metrology: they are used to sample

rapidly varying signals or as probe signals in ranging radars
and time-domain reflectometry [2]–[4]. In addition, possible use
of short pulses as career signals in communication has been
actively investigated [5].

The nonlinear transmission line (NLTL), a 1-D lattice of
inductors and varactors [Fig. 1(a)], stands as one of the most
powerful vehicles to generate short electrical pulses [6]. This
is due to NLTL’s unique ability to shape an input signal into
a sharp, spatially localized pulse known as a soliton: Fig. 1(a)
shows an example where an input pulse is compressed into a
soliton. The NLTL has been extensively studied over the past
40 years [6]–[8], culminating in a monolithic structure that
can achieve a pulse rise time as low as 480 fs [8]. In these
past 40 years of works, however, the NLTL has been used
almost exclusively as a two-port (input output) device that
requires a high-frequency input to produce a soliton pulse
output [Fig. 1(a)].
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Fig. 1. (a) Two-port NLTL. (b) One-port electrical soliton oscillator.

Reporting in [1], the authors recently introduced the first
one-port (output-only) electrical circuit that robustly self-gen-
erates a periodic, stable train of electrical soliton pulses with
no high-frequency input. This electrical soliton oscillator, as
an autonomous and self-contained (no input needed) source
of electrical solitons, marks a distinctive departure from the
traditional two-port NLTL.

Our soliton oscillator [1] was made possible by combining an
NLTL with a special amplifier in a circular topology [Fig. 1(b)].
By nature, solitons circulating in such an oscillatory loop are
“unruly,” i.e., they tend towards significant amplitude and phase
variations as a result of continual collisions amongst co-circu-
lating solitons. This oscillation instability had been previously
difficult to address [1]. The key to our success in building the
stable soliton oscillator was finding a way to “tame” the unruly
solitons and incorporating the taming mechanism in the ampli-
fier. In optics, lasers that self-generate a train of light wave soli-
tons are a well-known technology [9]. Our soliton oscillator may
be understood as an electrical analogue of such soliton lasers.

The present paper consists of two thematic parts. The first part
is a review on the following topics:

• Section II: NLTL and electrical solitons.
• Section III: Our soliton oscillator work to date [1] (this

work was also reviewed in [10]).
This review part is prepared to share the still-fresh soliton
oscillator concept with this journal readership and to facilitate
the reading of the rest of the paper.

The second part reports on new contributions from our con-
tinuing soliton oscillator research. It is broken down as follows:

• Section IV: Further experimental studies on the soliton os-
cillator dynamics using the discrete prototype of [1].

0018-9200/$25.00 © 2007 IEEE
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Fig. 2. (a) An NLTL. (b) Another form of NLTL. (c) The general soliton wave-
form on an NLTL.

• Section V: Detailed description of a CMOS prototype that
demonstrates a chip-scale operation of the soliton oscil-
lator. This work was briefly reported in [11].

• Section VI: The focus up to Section V is on attaining
stable soliton oscillation by controlling unruly solitons in
the topology of Fig. 1(b). In this section, we explore the
polar opposite, discussing with supporting simulations the
case where promotion of the unruly soliton dynamics in
the same topology leads to chaotic oscillations.

II. REVIEW—NLTL AND ELECTRICAL SOLITONS

A. Solitons

A pulse traveling in a dispersive medium generally breaks
down to multiple sinusoidal waves because different Fourier
components propagate at different speeds. Energy initially lo-
cally confined in the pulse cannot maintain the spatial localiza-
tion as the pulse travels.

In contrast, in a nonlinear dispersive medium, the nonlinearity
can balance out the dispersion, and a unique pulse exhibiting no
dispersion can be propagated. This pulse is known as a soliton
[12]–[14]. In the absence of loss, the soliton preserves its exact
shape while traveling. When loss is present, the soliton changes
its shape as it has to lose energy traveling, but it still maintains
spatial localization of energy in the changing pulse shape, not
breaking into multiple sinusoids [15]. Other unique properties
of solitons will be described shortly in the context of electrical
solitons.

Solitons are encountered throughout nature [16]. Water,
plasma, mechanical lattices, optical fibers, and magnetic films
are examples that can act as nonlinear dispersive media where
solitons can be propagated in their respective physical forms.

B. Electrical Solitons

In electronics, nonlinear transmission lines (NLTLs) serve as
nonlinear dispersive media where electrical solitons can propa-
gate in the form of voltage waves [6]. The NLTL is constructed
by periodically loading a normal transmission line with varac-
tors (e.g., reverse-biased junction diodes or MOS capacitors)
[Fig. 2(a)], or alternatively, by arranging inductors and varac-
tors in a 1-D lattice [Fig. 2(b)]. The nonlinearity of the NLTL
originates from the varactors whose capacitance changes with

applied voltage, while its dispersion arises from its structural
periodicity.

Fig. 2(c) shows the general soliton waveform on an NLTL
in the absence of loss, which is a periodic train of voltage soli-
tons. This waveform is called the cnoidal wave, and is a solu-
tion to what is known as the equation [13]. Many other
physical manifestations of solitons, e.g., water wave solitons,
plasma solitons, and mechanical lattice solitons are solutions to
the equation as well, and the essential properties of elec-
trical solitons are common among these -type solitons.1

There are an infinite number of possible cnoidal waves that can
form on a given NLTL by interdependently varying amplitude

, pulse spacing , and pulse width [ , , and are with
reference to Fig. 2(c)]. Initial or boundary conditions will deter-
mine the specific cnoidal wave that can propagate on the NLTL.

Understanding our soliton oscillator, described later, does not
warrant detailed mathematical descriptions of the equa-
tion. The following two subsections will rather focus on their
physical properties pertinent to this paper.

C. Propagation and Collision of Electrical Solitons

In addition to their ability to maintain spatial localizations of
energy in pulse shapes, electrical solitons on the NLTL exhibit
other unique dynamics [12], [13]. Here we review three relevant
dynamical properties.

First, a taller soliton travels faster than a shorter one on
the NLTL. Due to this amplitude-dependent speed, if a taller
soliton is placed behind a shorter one [Fig. 3(a), top], the taller
one will catch up and collide with the shorter one, and move
ahead of it after the collision [Fig. 3(a)]. Two other impor-
tant properties are seen in this collision process. During the
collision [Fig. 3(a), middle], the two solitons do not linearly
superpose and experience significant amplitude modulations
(nonlinear collision). After the collision [Fig. 3(a), bottom],
the two solitons recover their original shapes, however, they
have acquired a permanent time (phase) shift, shown by the
difference between and in Fig. 3(a): with no time shift,

and would be equal since the time elapse before and after
the collision is the same in the figure. The three soliton prop-
erties above, i.e., 1) amplitude-dependent speed, 2) amplitude
modulation during collision, and 3) phase modulation after
collision, are what makes solitons unruly, and cause difficulties
in constructing a stable soliton oscillator [Section III].

D. Forming and Damping of Electrical Solitons

The previous subsection assumed that electrical solitons were
already formed on the NLTL. How do we form solitons on the
NLTL in the first place? If a non-soliton wave is launched onto
the NLTL, it will change its waveform in the course of prop-
agation to form into a soliton or solitons [13]. More specifi-
cally, a non-soliton input close to soliton shape will be sharp-
ened into the soliton while shedding extra energy into a tail
ringing [Fig. 3(b), top]. A non-soliton input significantly dif-
ferent from soliton shape will break up into multiple solitons of
different amplitudes: the bottom of Fig. 3(b) illustrates an ex-
ample where a square pulse input on the NLTL breaks up into

1Light wave solitons belong to a different class of solitons [16].
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Fig. 3. (a) Amplitude-dependent soliton speed and nonlinear soliton collision
on an NLTL. d 6= d . (b) Transient soliton-forming processes on an NLTL. (c)
Soliton damping on a lossy NLTL.

multiple solitons. It is these transient soliton-forming processes
[Fig. 3(b), both top and bottom] that have been widely exploited
for the past 40 years in the traditional two-port NLTL approach
to generate short-duration electrical pulses [6]–[8]. In our one-
port soliton oscillator design, the process shown at the top of
Fig. 3(b) is beneficial [Section III-D] while the process shown
at the bottom of the figure can be detrimental [Section III-B].

Once a soliton is formed through the transient process, it does
not undergo any further sharpening or breakup. In the absence
of loss, the formed soliton will maintain its exact shape in the
course of further propagation. When loss is present, the formed
soliton will change its shape as it has to lose energy. The rela-
tionships among the amplitude , width , and velocity of a
non-damping soliton (a larger corresponds to a larger and a
smaller with specific mathematical relations; the – rela-
tion is what we previously referred to as amplitude-dependent
speed) are preserved even in the damping soliton, and since the
damping lowers in the course of propagation, the damping

Fig. 4. (a) Soliton oscillator topology. (b) Ring NLTL. Mode 1 (l = �), Mode
2 (l = 2�), Mode 3 (l = 3�).

soliton exhibits increasing and decreasing [Fig. 3(c)]: this
unique soliton damping process is well known as reported by Ott
[15]. An important notion is that even a damping soliton main-
tains spatial localization of energy in its changing pulse shape:
the pulse does not break into multiple sinusoids (no dispersion).
In addition, damping solitons also retain all the propagation and
collision properties described in Section II-C.

As will be seen in Section III-D, the distinctive dynamics be-
tween the soliton damping process (pulse widening) and non-
soliton’s soliton-forming transient process (pulse sharpening)
provide a criterion to determine when a soliton has actually
formed on a lossy NLTL.

III. REVIEW—ELECTRICAL SOLITON OSCILLATOR

In this section, we review the basic operating principles of the
electrical soliton oscillator, which we originally reported in [1].
This is to familiarize this Journal’s readership with the still-fresh
soliton oscillator concept, and to facilitate the reading of the
subsequent sections.

A. Soliton Oscillator Topology

The soliton oscillator consists of a ring NLTL and a non-in-
verting amplifier inserted in the ring [Fig. 4(a)]. The ring NLTL
supports certain soliton circulation modes determined by the pe-
riodic boundary condition, ( : cir-
cumference of the ring NLTL; : spacing between two adjacent
solitons) [Fig. 4(b)]. The amplifier is to enable initial oscilla-
tion startup and to compensate loss in steady state (as is com-
monly done in sinusoidal oscillators [17], [18]). The ultimate
goal of this topology is to self-generate and self-sustain one of
the soliton circulation modes of Fig. 4(b).

B. Oscillation Instability Mechanisms

The topology indeed leads to oscillations, self-starting from
noise. However, when standard amplifiers are used in the
topology, the oscillations tend to be plagued with instability
problems, exhibiting significant variations in pulse amplitude
and repetition rate [1].
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Fig. 5. (a) A saturating amplifier. (b) Simulated unstable oscillation. (c) Impact
of signal saturation.

Generally speaking, the oscillation instability arises because
the circular topology not only generates the desired soliton cir-
culation mode, but can also excite parasitic solitons. The desired
and parasitic solitons continually collide while co-circulating in
the loop due to their generally different amplitudes and resultant
speed difference (amplitude-dependent speed, Section II-C). It
is these collision events that cause the significant modulations in
pulse amplitude and repetition rate (these effects of soliton col-
lisions were explained in Section II-C). To see concretely how
colliding solitons are generated, let us examine two cases.

• Case I—Saturating amplifier: Consider the case where a
standard saturating, non-inverting amplifier is used in the
soliton oscillator [Fig. 5]. The amplifier is biased at a fixed
operating point. Assume that a soliton appears at the am-
plifier input at a certain time [ , Fig. 5(c)]. This soliton,
after passing through the amplifier, will turn into a square
pulse due to the saturation by the amplifier [ , Fig. 5(c)].
As seen in Section II-D, the square pulse will break up
into several solitons of different amplitudes/speeds while
traveling down the NLTL, eventually reappearing at the
amplifier input at different times. This process repeats it-
self, creating many solitons with various amplitudes in the
loop. These solitons circulate with different speeds (ampli-
tude-dependant speed) and hence, continually collide with
one another, causing time shifts and amplitude variations.
The result is unstable oscillation [Fig. 5(b)]. The signal sat-
uration is a clear cause of the soliton collision events and
the resultant oscillation instability.

• Case II—Linear amplifier: The discussion above suggests
that one might be able to attain a stable soliton oscil-
lation if signal saturation is mitigated by using a linear
amplifier [Fig. 6(a)] in the circular topology of Fig. 4(a).
Ballantyne et al. [19], [20] indeed implemented such a
system, where a periodic train of solitons was seen. With
minor ( 2%) changes to loop parameters such as gain,
however, multiple pulses appeared in the oscillator and
collided with one another, causing once again oscillation
instabilities [Fig. 6(b)]. This shows the lack of robustness,
reproducibility, and controllability in the soliton oscillator
using the linear amplifier.

This second case suggests that the saturation reduction is a
necessary but not a sufficient condition to stabilize the oscilla-

Fig. 6. (a) A linear amplifier. (b) Depiction of oscillations with pulse amplitude
and repetition rate variations [19], [20].

tion and ensure reproducibility, and there are other mechanisms
that cause soliton collision events. Two other mechanisms we
identified in [1] are perturbations and multi-mode oscillations.
First, any small ambient perturbation (e.g., noise) can grow into
parasitic solitons in the soliton oscillator due to gain provided by
the amplifier. The desired soliton circulation mode and parasitic
solitons will propagate at different speeds due to their generally
different amplitudes, colliding and building up oscillation insta-
bilities. Second, various soliton circulation modes of Fig. 4(b)
with generally different amplitudes can co-circulate in the loop
at different speeds, leading to soliton collision events again and,
hence, unstable oscillation.

Summarizing, the soliton oscillator of Fig. 4(a) readily lends
itself to production of multiple colliding solitons. Three main
causes are:

• signal saturation;
• ambient perturbations;
• multi-mode oscillation.

The key to our success in stable soliton oscillator design in [1]
was to identify these three instability mechanisms and to de-
velop an amplifier for the soliton oscillator of Fig. 4(a), which
not only provides gain but also incorporates functionalities to
suppress the three instability mechanisms.

C. Taming Electrical Solitons with an Amplifier

In [1], we attained the stabilizing amplifier by incorporating
an adaptive bias control in a standard saturating amplifier. In
this subsection, we will explain how the adaptive bias control
can be used to simultaneously suppress the three instability
mechanisms.

Fig. 7(a) shows the transfer curve of the saturating ampli-
fier, which can be divided into the attenuation, gain, and sat-
uration regions based on the curve’s tangential slopes. At the
initial startup, the amplifier is biased at in the gain region so
that ambient noise can be amplified to initiate oscillation startup.
As the oscillation grows and forms into a soliton train, the DC
component of the oscillation signal increases [Fig. 7(b)]. This
increase in the DC component is used to adaptively lower the
amplifier bias [dashed arrow, Fig. 7(c)]. The reduced bias corre-
sponds to an overall gain reduction, since a portion of the pulse
enters the attenuation region. The bias point continues to move
down on the curve until the overall gain becomes equal to the
system loss, finally settling at steady-state bias .

In steady state [Fig. 7(c)] with bias situated in the atten-
uation region, the three instability mechanisms are prevented
simultaneously. First, the reduced bias ensures that the peak
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Fig. 7. (a) Transfer curve of our stabilizing amplifier.A is initial start-up bias.
(b) DC component of V increases as the oscillation grows into a soliton train.
(c) Increased DC component is used to lower the bias of the amplifier, leading
to steady-state bias B.

portions of input pulses do not enter the saturation region,
mitigating signal saturation. Second, with the reduced bias in
steady state [Fig. 7(c)], the input soliton train is placed across
the attenuation and gain regions, causing small ambient per-
turbations such as noise and tail ringings around the bias to be
attenuated. Note that the perturbation rejection is accomplished
while maintaining gain for the main portions of input pulses
to compensate loss. This threshold-dependent gain-attenuation
mechanism is widely employed in mode-locked lasers in optics,

Fig. 8. Circuit schematic of the first soliton oscillator prototype.

where it is known as saturable absorption [21], but was origi-
nally introduced in electronics domain by Cutler for his linear
pulse oscillator [22], [1]. Note that the nonlinearity in the lower
portion of the transfer curve is exploited to suppress the second
instability mechanism (perturbations) while the nonlinearity
in the upper portion is avoided to mitigate the first instability
mechanism (signal saturation).

The third instability mechanism (multi-mode oscillation) is
also suppressed via the adaptive bias control. In steady state,
a higher mode [among various soliton modes of Fig. 4(b)]
has a larger DC component and therefore its corresponding
steady-state bias sits farther down on the transfer curve, making
the mode receive less overall gain. This mode-dependent gain
allows for single-mode selection [1].

D. First Discrete Prototype

To demonstrate the concept of the stable electrical soliton os-
cillator, we constructed the first prototype at the discrete level [1].
The circuit schematic is shown in Fig. 8. The amplifier shown
within the dashed box incorporates the adaptive bias control to
perform the functionality described with Fig. 7. The amplifier
consistsof twofunctionallyequivalent, complementary inverting
stages, one built around an nMOS transistor, , and the other
around a pMOS transistor, , which, when taken together, form
a non-inverting amplifier. The pMOS stage works as follows. The
amplifier output, , is sensed by the – voltage divider,
and then is integrated by the – low pass filter. The integrated
voltage, , representsa scaledDCcomponentof .ThisDC
component is fed to the gate of through resistor to set its
bias. As the DC level of increases, will rise, reducing the
gate-source voltage of , effectively lowering its bias. A sim-
ilar argument applies to the nMOS stage. Combining the two
stages, the effective bias of the amplifier at the input is reduced
as the DC level of increases, performing the adaptive bias
control to achieve the functionality of Fig. 7.

The NLTL of Fig. 8 has a termination at the amplifier input to
minimize reflection back to the NLTL, which could otherwise
significantly perturb the soliton oscillation. Perfect termination
of an NLTL is challenging since its characteristic impedance
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Fig. 9. (a) Measured startup transient [1]. (b) Steady-state soliton oscillation
[1]. (c) Measured steady-state oscillation at various points [1]. FWHM pulse
widths are measured.

changes with voltage. Our termination consists of an intention-
ally high-loss section of NLTL and a resistor whose value is the
average of the characteristic impedance seen by a desired signal.
Due to the imperfect termination, reflections do occur, but they
are small enough to be attenuated by the perturbation rejection
mechanism incorporated in the amplifier.

Fig. 9(a) shows measured oscillation startup at the 8th sec-
tion of the NLTL (total 22 LC sections). The oscillator starts by
amplifying ambient noise creating a small oscillation initially,
eventually growing into a steady-state soliton train. During this
process, another competing mode is clearly seen. It first grows
with time, but is eventually suppressed by the stabilizing mecha-
nism of the amplifier. In the figure, one can also observe that the
shorter pulse (competing mode) propagates at a different speed
than the taller pulse (surviving mode): in this time-domain mea-
surement at the fixed point on the NLTL, the shorter pulse origi-
nally behind the taller pulse catches up with the taller pulse and
eventually moves ahead of it after collision. In the space domain,
this corresponds to the taller pulse propagating faster than the
shorter pulse, a key signature of solitons [Section II-C].

Fig. 10. Circuit schematic of the second soliton oscillator prototype.

Fig. 9(b) shows a steady-state soliton train measured at the
8th section on the NLTL (total 30 LC sections). The ampli-
tude and pulse repetition rate remained stable. When perturbed
with large external signals, the oscillation always returned to the
same steady-state soliton train. Additionally, for a given set of
circuit parameters, every startup led to the same steady-state os-
cillation. These demonstrate the same level of robustness and
stability found in standard sinusoidal oscillators [17], [18].

One of the most fascinating dynamics of the soliton os-
cillator can be observed by following the pulse around the
oscillator loop in steady state. Fig. 9(c) shows such spatial
dynamics measured at three different positions on the NLTL.
At the amplifier output, the pulse is not an exact soliton, and,
hence, sharpens into a soliton traveling down the NLTL. Once
the soliton is formed at the 8th section, it does not further
sharpen since it is now a soliton. Instead, the soliton damping
[Section II-D] becomes the dominant process as the soliton
further travels down the NLTL, lowering in amplitude and ve-
locity while increasing in width. It is this clear existence of the
transition point (8th section) between the pulse sharpening and
widening (damping) that shows the formation of the soliton at
that transition point.

E. Second Discrete Prototype

The soliton oscillator is a general concept and can be scaled
in frequency. We built the second discrete prototype at a higher
frequency range. The preliminary result was presented in [1].
Here, we provide its full description.

The oscillator schematic is shown in Fig. 10. The bipolar
junction transistor (BJT) amplifier inside the dashed box con-
sists of a common emitter amplifier with emitter degeneration
and a signal inversion stage. While the MOS amplifier of Fig. 8
adjusted its bias based on its output signal, this BJT amplifier
adjusts its bias based on its input signal. Specifically, it pro-
duces its input signal’s scaled DC component at via the

– voltage divider and the – low-pass filter. Also
differently from the MOS amplifier, the BJT amplifier’s input
bias (base of ) is fixed. In the initial startup transient, the
fixed bias of the amplifier is in the gain region [top, Fig. 11]. As
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Fig. 11. Effective adaptive bias control in Fig. 10.

the oscillation grows and forms into a pulse train, increases,
which moves the amplifier transfer curve towards right [bottom,
Fig. 11], placing the fixed bias in the attenuation region. As a re-
sult, in steady state, the input pulse is placed across the gain-at-
tenuation regions. Summarizing, while this amplifier moves the
transfer curve instead of the amplifier bias, in steady state, it
places the pulse train just like in Fig. 7(c), hence achieving all
of the three stability mechanisms. The measured steady-state
soliton oscillation from the second prototype is shown in Fig. 12.
The periodic soliton train clearly seen remained as stable as the
first prototype.

With the soliton oscillator concept review complete in this
section, we will now move on to new contributions.

IV. FURTHER EXPERIMENTAL STUDIES ON THE SOLITON

OSCILLATOR DYNAMICS

A. Existence of a Limit Cycle

In [1], the stability of the soliton oscillator was demonstrated
by steady-state oscillations that were robust to ambient and ex-
ternal perturbations. The key character of any stable oscillator
is the existence of a limit cycle in phase space. For instance,
for an LC oscillator whose voltage across the LC tank is , the

Fig. 12. Soliton oscillation from the second prototype [1].

Fig. 13. (a) Steady-state trajectory of (V; dV=dt). (b) Transient response to a
significant disturbance. (c) Steady-state trajectory after the effect of perturbation
has settled.

steady-state oscillation maps onto an ellipse-like closed trajec-
tory (limit cycle) in a 2-D space (phase space). Re-
gardless of the initial condition or after perturbations, the os-
cillation point always ends up on the limit cycle in
steady state.

Here, we experimentally demonstrate the existence of a limit
cycle in the soliton oscillator, using the first discrete prototype
[Section III-D]. The low-frequency discrete prototype is used to
facilitate a large perturbation of the system. Fig. 13(a) shows the
trajectory of the steady-state oscillation point in the
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Fig. 14. W
p
A versus A.

2-D phase space where is the voltage taken from the 7th node
on the NLTL.2 After a significant perturbation of the soliton os-
cillator using an external pulsed source, the oscillation trajectory
in the phase space deviates from the steady-state trajectory of
Fig. 13(a) for many cycles as depicted in Fig. 13(b), but it even-
tually settles back to the same original steady-state trajectory
[Fig. 13(c)]. This experiment demonstrates that the steady-state
trajectory of Fig. 13(a) is the limit cycle of the soliton oscillator.

B. Spatial Dynamics Revisited

The spatial dynamics of the first prototype shown in Fig. 9(c)
exhibited a clear transition from pulse sharpening to pulse
widening. There we reasoned that the sharpening and widening
correspond to soliton-forming and soliton-damping processes,
respectively.

To confirm this reasoning, the temporal pulse width and
pulse amplitude , measured at each section of the NLTL of
the first prototype in its steady state, are plotted in the
versus plane. See Fig. 14.3 This specific choice of – axes
is just one way of showing how the pulsewidth and amplitude
change as the pulse circles around the oscillator loop. Fig. 14
shows that the initial pulse sharpening process and the following
pulse widening process trace two distinct trajectories, to
(dashed line) and to (solid line), respectively. This clearly
suggests that the pulse in the sharpening process and that in the
widening process are of fundamentally different nature.

and of a soliton on the NLTL are related by [14]

(1)

where is the single inductance in the NLTL, and and are
derived from the varactor model where

is the applied voltage. As mentioned in Section II-D, even in
a damping soliton, the – relation above is preserved [15],
making a plot of versus a straight line. Now as can be
seen from Fig. 14, the data points during the pulse widening can
be placed roughly on the solid straight line. Extracted , , and

2The real phase space is 2N -dimensional whereN is the number of LC sec-
tions in the NLTL. The dynamics in the 2-D “pseudo”-phase-space, however,
reasonably well reflects the entire system dynamics.

3The set of circuit parameters used in this specific experiment is different
from those used for the experiment to obtain Fig. 9(c).

from this solid line deviate from the real values by 20%, which
arises from the inaccurate first-order modeling of the varactor,
but the general trend clearly shows that the pulse during the
widening is indeed a soliton that is damping. In contrast, the
data during the sharpening process are far off from the solid
straight line, showing that the pulse during the sharpening is not
a soliton (it is sharpening into a soliton).

V. CMOS ELECTRICAL SOLITON OSCILLATOR

To demonstrate chip-scale operation of the soliton oscillator,
we implemented the circuit of Fig. 8 in 0.18- m CMOS process.
Here, we detail its design, construction, and measurements (this
work was briefly reported in [11]).

A. Design Procedure

In the absence of loss, the temporal soliton width and
the soliton repetition rate of the th soliton circulation mode
on the ring NLTL [Fig. 4(b)], consisting of LC sections, are
given by [16]

(2)

(3)

where is the soliton amplitude. These equations are very
useful as initial design guidelines, but one should eventually
resort to circuit simulations for the following reasons. First,
and in (2) and (3) are functions of not only the component
values, but also the soliton amplitude, , which is difficult to
express in terms of component values. Second, the delay in the
amplifier will result in the pulse repetition rate smaller than
what is predicted by (3). Third, the equations above assume that
the soliton waveform is the same everywhere on the NLTL in
steady-state oscillation, but this is untrue as we saw in Fig. 9(c).

The simulated target pulse repetition rate and pulsewidth
of the chip-scale soliton oscillator were around 1 GHz and a
few hundred picoseconds, respectively. These relatively lower
speeds were chosen to facilitate time-domain measurement of
this first chip-scale proof-of-concept using a real-time oscillo-
scope.

B. Construction of the Chip-Scale Soliton Oscillator

Fig. 15 shows a micrograph of the implemented chip-scale
soliton oscillator, which consists of an IC mounted on an
in-house fabricated glass substrate. The IC contains the sta-
bilizing amplifier and the varactors ( -junction diodes) of
the NLTL. The NLTL inductors were created by bonding gold
wires back and forth between the pads on the IC and metallic
pads on the glass substrate. Bonding was done by using an au-
tomated bonding machine to ensure consistency in wire length.
The estimated inductance variation from inductor to inductor
was less than 5%. Magnetic couplings between adjacent wires
estimated via electromagnetic simulations were taken into
account in choosing proper lengths of the bonding wires to
generate a desired inductance. The bonding wires were used as
NLTL inductors to test various different NLTL characteristics
(inductance value and NLTL length) in the soliton oscillator via
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Fig. 15. Micrograph of the chip-scale soliton oscillator, consisting of a CMOS
IC mounted on a glass substrate.

post-fabrication adjustment in this initial stage of the chip-scale
prototype development. However, the bonding pads on the IC
introduce parasitic linear capacitors, which compromise the
nonlinearity of the NLTL.

C. Measurement Results

The chip-scale system of Fig. 15 self-starts from noise,
leading to self-sustained stable soliton oscillation. Fig. 16(a)
shows the soliton train produced, measured at one point on
the NLTL using an Agilent 54855A real-time oscilloscope.
The soliton train has a pulse repetition rate of 1.14 GHz and a
pulsewidth (FWHM) of 293 ps. Several different samples of
the chip-scale prototype were obtained by varying the NLTL
characteristics via bond wire adjustment. These samples had
a pulse repetition rate ranging from 0.9 to 1.9 GHz and pulse
width ranging from 293 to 400 ps.

Fig. 16(b) shows the steady-state voltage signals measured
at three different nodes on the NLTL. This is to show how the
pulse shape changes as it circulates in the chip-scale oscillator
loop in steady state, as we did the same with the first prototype
[Fig. 9(c)]. The spatial dynamics seen in Fig. 9(c) in the dis-
crete prototype, i.e., soliton forming first, followed by soliton
damping, is again observed here, suggesting the universality of
the spatial dynamics.

Note that in this specific chip-scale implementation, the
degree of the pulse compression in the soliton forming process
(429 ps 385 ps: width reduction by a factor of 89%) is not as
significant as in the case of the first discrete prototype [Fig. 9(c):
100 ns 43 ns: width reduction by a factor of 43%]. This is
because the nonlinearity of the NLTL is compromised by the
parasitic linear capacitance of the bonding pads, which were
necessary in this specific implementation using bonding wires
to construct the NLTL. In future implementations, the inductive
elements can be obtained using on-chip planar transmission
lines [18] to reduce the stray elements and to maximize NLTL’s
nonlinearity.

D. Discussions and Future Directions

The minimum pulsewidth of 293 ps achieved in our latest
chip-scale soliton oscillator prototype is not a record number

Fig. 16. (a) Measured steady-state soliton oscillation of the chip-scale soliton
oscillator. (b) Measured spatial dynamics of the chip-scale soliton oscillator in
steady state.

as compared to the state-of-the-art pulse generation circuits,
including the ultrafast two-port NLTL [8]. The purpose and
value of our work so far lie in the clear demonstration of the
stable electrical soliton oscillator concept and its feasibility
for chip-scale operation. We intentionally chose rather slower
operation speeds to facilitate the in-depth study of this new
class of circuits using the real-time oscilloscope. Now with both
the concept and chip-scale operation firmly demonstrated, the
soliton oscillator, especially its NLTL, can be quickly scaled to
a smaller size to significantly enhance the speed. For instance,
the ultrafast two-port GaAs NLTLs in [8] (480-fs pulse rise
time) can be used in a GaAs soliton oscillator IC to signifi-
cantly reduce the soliton width. (Although the first chip-scale
prototype was in CMOS, this was due to the availability of the
technology at the time of implementation, and the chip-scale
system is extendable to other semiconductor technologies.)

Using such an ultrafast NLTL in the soliton oscillator raises
an important question on the impact of the amplifier bandwidth
on the minimum soliton width. While the propagation of a 1-ps
wide pulse on the standalone NLTL is feasible [8], amplifiers,
even in the state-of-the-art solid-state technologies, cannot pro-
vide bandwidth for such a sharp pulse. The experimental results
shown with Figs. 9(c) and 16(b) clearly suggest, however, that
the soliton forming process (pulse sharpening) on the NLTL
after the output of the amplifier may be able to overcome the
bandwidth limitation of the amplifier, and hence, it may be fea-
sible to achieve a 1-ps pulsewidth using the NLTL of [8] despite
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Fig. 17. Chaotic soliton oscillator.

the relatively slower amplifier. The explicit demonstration of
this interesting possibility remains an open question, and would
be a natural extension of this work.

Final remark: the soliton oscillator of Fig. 4(a) used so far
to prove stable soliton oscillation uses a lumped amplifier. The
design of a distributed soliton oscillator where gain is provided
all along the NLTL could be an important direction in the further
development of the oscillator.

VI. CHAOTIC SOLITON OSCILLATOR

We have so far focused on stable soliton oscillation by devel-
oping the amplifier that can control the unruly soliton behaviors.
Now let us look at the opposite end of the spectrum, and con-
sider if one can attain an extreme oscillation instability, or chaos,
by promoting the unruly soliton dynamics. The discussion in
Section III-B suggests that one way of promoting the soliton’s
unruly behavior is to increase the signal saturation in the am-
plifier in the soliton oscillator of Fig. 4(a). This could intensify
oscillation instabilities (variations in pulse amplitude and repe-
tition rate) through increased soliton collision events, possibly
leading to chaotic oscillations, as the authors suggested in [23].

To examine the possibility of chaotic oscillation, we consider
the circuit of Fig. 17. This is of the same topology as the original
soliton oscillator of Fig. 4(a) in that an amplifier and an NLTL
are combined in a ring. But since neither preservation of pulse
polarity nor stability mechanism is required in the amplifier to
attain chaos, we opted for an inverting amplifier consisting of
three CMOS inverter stages for simplicity. The inverting ampli-
fier also facilitates signal saturation and obviates the need for a
DC-blocking capacitor like in Figs. 8 and 10.

Using Cadence, we performed transistor-level transient simu-
lations for the circuit (24 LC sections for the NLTL; nH
with a 1.3 series resistance. The complex varactor model used
in the simulation, if Taylor-expanded, gives

with pF and ). Fig. 18(a) shows simu-
lated voltage at one node on the NLTL, while Fig. 18(b)
shows its Fourier transform. The unstable oscillation in time do-
main and the broad spectral distribution hint at chaotic oscilla-
tion. Figs. 18(c) and (d) show the oscillation trajectories in the

phase space for two different time spans: as the time
span increases [Fig. 18(d)], the trajectory fills more of what ap-
pears to be a bounded region. This phase space dynamics once
again indicates that the oscillation may be chaotic.

Fig. 18. Simulation of the circuit of Fig. 17. (a) Time-domain signal, V (t), at
one node on the NLTL. (b) Fourier transform of V (t). (c) Phase space dynamics
from t = 49:5 �s to t = 50 �s. (d) Phase space dynamics from t = 47:5 �s
to t = 50 �s.

The hallmark property of a chaotic system is that the dis-
tance of two phase-space points initially proximate to each
other (very close initial condition: ) will grow expo-
nentially with time. We simulated a model mimicking the cir-
cuit of Fig. 17 in Matlab and Fig. 19 shows the evolution of

where . It increases linearly with
time (positive slope), confirming that exponentially grows
and the oscillator is indeed chaotic. (The slope is the Lyapunov
exponent, whose positiveness is a sufficient indicator of chaos
in general [24].)

Electrical chaos generators are of significant engineering in-
terest due to their potential use in applications such as encrypted
chaotic communications [25]. While chaos generation circuits
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Fig. 19. Simulated log(d(t)=d(0)) versus t.

abound, the chaotic soliton oscillator may have an edge with
its potentially very large bandwidth owed to the NLTL’s soliton
compression capability [6]–[8].

VII. CONCLUSION

While the hegemony of sinusoidal signals for high-frequency
signal processing in electronics will undoubtedly last into the
foreseeable future, certain non-sinusoidal signals, such as short-
duration pulses and chaotic signals, may further enrich the scope
and capacity of modern electronics. The electrical soliton oscil-
lator presented in this paper can self-generate both a stable train
of short soliton pulses and a chaotic signal, by taming or encour-
aging the unruly nature of solitons. The soliton’s superb ability
of pulsewidth compression and resultant large bandwidth may
give the edge to the electrical soliton oscillator over other pulse
and chaos generation circuits. This prospect is brightened by
the notion that nature’s most intricate and brilliant circuit, the
human brain, utilizes soliton-like neuron impulses, and often,
their chaotic behaviors.
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