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Phase Noise of Distributed Oscillators
Xiaofeng Li, O. Ozgur Yildirim, Wenjiang Zhu, and Donhee Ham

Abstract—In distributed oscillators, a large or infinite number of
voltage and current variables that represent an oscillating electro-
magnetic wave are perturbed by distributed noise sources to result
in phase noise. Here we offer an explicit, physically intuitive anal-
ysis of the seemingly complex phase-noise process in distributed
oscillators. This study, confirmed by experiments, shows how the
phase noise varies with the shape and physical nature of the oscil-
lating electromagnetic wave, providing design insights and physical
understanding.

Index Terms—Distributed oscillators, oscillators, phase noise,
pulse oscillators, soliton oscillators, standing-wave oscillators.

I. INTRODUCTION

P HASE NOISE is among the most essential and interesting
aspects of oscillator’s dynamics and quality [1]–[12]. The

phase noise of an oscillator [see Fig. 1(a)], where noise per-
turbs the voltage across, and the current in, the tank, is well
understood, owed to works developed until 1960s. For example,
Lax’s 1967 work [1] provided a tremendous fundamental under-
standing of phase noise in oscillators.

In contrast, phase-noise processes are harder to grasp in
distributed oscillators, or wave-based oscillators, where energy
storage components and/or gain elements are distributed along
waveguides or transmission lines to propagate electromagnetic
waves. The difficulty arises as a large or infinite number of
voltage and current variables representing a wave are continu-
ally perturbed by noise sources distributed along waveguides
or transmission lines. How can we visualize the complex
perturbation dynamics and calculate phase noise of distributed
oscillators? How does phase noise depend on waveforms, and
how can we reconcile it with thermodynamic concepts? An
explicit analysis of phase noise in distributed oscillators, which
can offer physical understanding, remains to be carried out.

In this paper, we conduct an explicit physically intuitive anal-
ysis of phase noise in distributed oscillators. The starting point
is our realization that the comprehensive phase-noise frame-
work established in 1989 by Kaertner [2], where he extended
Lax’s phase-noise study to deal with any general number of
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voltage and current variables in oscillators, is applicable to the
distributed oscillators. Our explicit application of Kaertner’s
framework to phase-noise analysis in distributed oscillators pro-
vides physical understanding and design insight. The essence of
our analysis is experimentally verified.

Our analysis can be applied to distributed oscillators with ar-
bitrary waveforms along waveguides or transmission lines. As
demonstrational vehicles, we use three distributed oscillators,
shown in Fig. 1(b)–(d). Each oscillator consists of a transmis-
sion line, an active circuit at one end of the line, and an open
at the other line end. Both the open end and active circuit re-
flect an oncoming wave so that the wave can travel back and
forth on the transmission line. The reflection by the active cir-
cuit comes with an overall gain, which compensates the line
loss. Depending on the specific gain characteristic, different os-
cillation waveforms result. If the active circuit amplifies small
voltages and attenuates large voltages as in standard oscil-
lators, sinusoidal standing waves are formed on the transmis-
sion line [13], [14] [see Fig. 1(b)]. If the active circuit attenu-
ates small voltages and amplifies large voltages,1 a bell-shaped
pulse is formed and travels back and forth on the line [15] [see
Fig. 1(c)]. If the normal, linear transmission line in Fig. 1(c) is
replaced with a nonlinear transmission line, a line periodically
loaded with varactors, as in Fig. 1(d), again a pulse is formed
[16], [17], but the line nonlinearity sharpens the pulse into what
is known as a soliton pulse, which is much sharper than the
linear pulse [16]–[20].

Using these oscillators, we show how to calculate phase noise
in distributed oscillators, a central outcome of this work. An-
other main outcome is that the calculation reveals (and exper-
iments confirm) how phase noise of distributed oscillators de-
pends on their waveforms: specifically, it is shown that the linear
pulse oscillator [see Fig. 1(c)] has lower phase noise than the
sinusoidal standing-wave oscillator [see Fig. 1(b)]. Not only is
this result useful from the design point of view, but it offers fun-
damental physical understanding if reconciled with thermody-
namic concepts. In the sinusoidal standing-wave oscillator, one
resonating mode is dominantly excited. Just like in the os-
cillator, the single resonating mode possesses two degrees of
freedom, namely, the electric and magnetic fields (voltage and
current standing waves), each storing a mean thermal energy
of ( : Boltzmann’s constant; : temperature) according
to the equipartition theorem. Overall, a total thermal energy of

perturbs the single resonating mode. This thermodynamic
notion is in congruence with our analysis; thus, the sinusoidal
standing-wave oscillator can be treated like the oscillator
without having to resort to our analysis developed for general
distributed oscillators. By contrast, in the pulse oscillator, the
oscillating pulse contains multiple harmonic modes, thus, the
equipartition theorem predicts that the pulse oscillator would

1If small voltages are attenuated, oscillation startup cannot occur. A special
startup circuit is to be arranged in this case [15]–[17].
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Fig. 1. Oscillator examples. (a) �� oscillator. (b) ��� sinusoidal standing-
wave oscillator. (c) Linear pulse oscillator. (d) Soliton pulse oscillator.

have higher phase noise than the sinusoidal standing-wave oscil-
lator, which is wrong and opposite the result of our analysis/ex-
periment. The inapplicability of the equipartition theorem in the
Fourier domain to the pulse oscillator arises as the multiple har-
monic modes are inter-coupled or mode-locked together. The
legitimate phase-noise calculation for the pulse oscillator thus
calls for a general analysis like ours, which captures the cor-
rect physics: noise generated at a given point of a wave propa-
gation medium affects a wave only when it passes through the
point, thus, the noise’s chance to enter the phase-noise process
is smaller for a spatially localized pulse than for a sinusoidal
wave spread over the medium. Consequently, the linear pulse
oscillator has lower phase noise.

Yet another main outcome of this study involves the soliton
pulse oscillator [see Fig. 1(d)]. As the soliton pulse oscil-
lator has a smaller pulsewidth than the linear pulse oscillator
[see Fig. 1(c)], according to the foregoing reasoning, the
former would have lower phase noise than the latter. However,
our analysis shows that this is not necessarily the case: due
to the amplitude-dependent propagation speed of solitons,
which is a hallmark nonlinear property of solitons, ampli-
tude-to-phase-noise conversion can significantly contribute to
phase noise of the soliton oscillator. Not only the waveform, but
also the wave’s nonlinear nature, plays a role in the phase-noise
process in the soliton oscillator.

Our analysis can be readily applied to oscillators with dis-
tributed gains [21]. To show the essence simply, however, we do
not include them in this paper. The essence is more easily tested
with the three example circuits above. In addition, for mathe-
matical simplicity, this paper focuses on phase noise incurred
by white noise only, although our analysis can be extended to

Fig. 2. Oscillator’s limit cycle in �� -D state space. For illustrative purposes,
we only show two axes.

deal with noise sources, as in [3], which is another work by
Kaertner, extending his original work [2] to include the effect of

noise.
Section II reviews the fundamental theories of phase noise by

Lax [1] and Kaertner [2]. Section III analyzes direct phase per-
turbations and their effect on phase noise. Section IV examines
indirect phase perturbations caused by amplitude-to-phase error
conversion, and their effect on phase noise. Sections V and VI
present measurements and their analysis.

II. PHASE-NOISE FUNDAMENTALS: REVIEW OF LAX’S AND

KAERTNER’S WORKS

A. Lax’s Fundamental Theory of Phase Noise

The essence of Lax’s work [1] may be understood as follows.
Consider an oscillator [see Fig. 1(a)]. The voltage across
and the current in the tank represent the oscillator’s state.
The steady-state oscillation follows a closed-loop trajectory, or
limit cycle, in the 2-D – state space (Fig. 2 with ).
Noise perturbs the oscillation, causing amplitude and phase er-
rors. The amplitude error that puts oscillation off the limit cycle
is constantly corrected by the oscillator’s tendency to return to
its limit cycle. In contrast, the phase error on the limit cycle
along its tangential direction accumulates without bound for no
mechanism to reset the phase exists. In other words, the phase
undergoes a diffusion along the limit cycle. Due to this phase
diffusion, the oscillator’s output spectrum is broadened around
the oscillation frequency, causing phase noise.

Mathematically, in the presence of only white noise, the phase
diffusion so occurs that the variance of the phase of the oscil-
lation grows linearly with time

(1)

where is the phase diffusion rate. This leads to the well-
known Lorentzian phase noise

(2)

and the behavior for

(3)

which is familiar from Leeson’s paper [22].
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As seen, once the phase diffusion rate is determined, phase
noise is known. can be determined by evaluating the phase
error along the tangential direction of the limit cycle for a given
noise perturbation. The phase error depends not only on the
noise level, but also on the oscillator state, or the limit cycle po-
sition where the perturbation occurs, due to the tangential pro-
jection [1]. This state-dependency is illustrated in Fig. 2: the
same noise perturbation causes different phase errors at two
different limit cycle positions and . Therefore, this state-de-
pendent or time-varying phase error is averaged along the limit
cycle, and thus will be a function of the oscillator’s waveform
(limit cycle shape), as well as the noise level [1]. This state-de-
pendent or time-variant property has been greatly exploited by
the circuit community for low-noise oscillator design [4].

B. Kaertner’s Generalization

Kaertner expanded Lax’s analysis to a general case where
an oscillator state is described with variables in a -di-
mensional ( -D) state space (Fig. 2) [2]. Noise perturbations
are decomposed into a component along the tangential direc-
tion of the oscillator’s limit cycle in the -D state space, and
components orthogonal to the tangential direction. The former
component, as in Lax’s work, corresponds to phase perturba-
tion that directly drives the phase diffusion process. Besides,
Kaertner considered how the latter components, corresponding
to amplitude perturbations, indirectly contribute to phase diffu-
sion through amplitude-to-phase-noise conversion determined
by the oscillator’s dynamics. This calculation, like Lax’s theory,
would follow the limit cycle and average the state-dependent
phase errors in determining . Therefore, it holds true even in
the general case treated by Kaertner that depends not only on
the noise level, but also on the waveform or the shape of the limit
cycle: this waveform dependency is a general hallmark property
of oscillator’s phase diffusion.

The general framework by Kaertner, including the orthogonal
projection, is the basis of this work. We translate Kaertner’s
mathematical language to what can be directly applied to calcu-
lating the phase noise of distributed oscillators. We decompose
noise perturbations into phase and amplitude perturbations, and
study their contributions to phase noise separately in Sections III
and IV.

III. PHASE NOISE DUE TO DIRECT PHASE PERTURBATION

This section calculates the phase diffusion driven directly by
the tangential projections of noise perturbations. We use the
three transmission-line oscillators in Fig. 1(b)–(d) as demon-
strational vehicles.

Before going into detail, let us first visualize the phase-noise
process in the transmission-line oscillator’s state space. The
transmission line can be an artificial medium consisting of

sections (Fig. 3). The corresponding oscillator has
state variables, each corresponding to a voltage or current
variable of a capacitor or inductor. These variables are
collectively represented by a single point

Fig. 3. Artificial transmission line consisting of � �� sections. � �

�� �� � � � � � . Loss components � and � are included with associate noise.

in the -D state space.2 In the steady state,
the state point evolves along a limit cycle, in the -D
space (Fig. 2). The voltage and current variables of are
perturbed by noise sources located along the transmission line,
and these perturbations can be collectively represented by
a single perturbation vector in the -D state space (Fig. 2).
Overall, we have a single noise perturbation vector that collec-
tively disturbs a single oscillator state point , the collection of
voltage and current variables, which evolve all together along
the limit cycle in the -D state space. Therefore, all voltage
and current variables share exactly the same phase diffusion
rate, and thus, the same phase noise. Our task is to calculate
this common phase diffusion rate.

When the transmission line is a continuous medium (e.g.,
coplanar stripline), the oscillator possesses infinitely many state
variables. This can be dealt with as an extreme case of the arti-
ficial line with .

Noise can be distributed along the line (e.g., thermal noise
associated with the distributed loss in the line) or lumped (e.g.,
noise from the lumped active circuit). We will treat these two
noise sources separately in Sections III-A and B.

A. Direct Phase Perturbation Due to Distributed Noise

We first consider the distributed noise from an artificial trans-
mission line with state variables (Fig. 3). The calculation
of the direct phase perturbation by the distributed noise runs
in two steps. First, by analyzing the oscillator dynamics in the
presence of the noise, we identify the vector representing the
noise perturbation in the -D state space. Second, we project
this noise perturbation vector onto the tangential direction of the
limit cycle to calculate the phase error.

To identify the vector of noise perturbation in the -D state
space, we apply Kirchhoff’s law in Fig. 33

(4a)

(4b)

where and the dot above a variable represents
a time derivative. Resistance and conductance represent
loss in the line. Their associated Nyquist voltage and current
thermal noise and satisfy and

. Other distributed noise sources, such as

2It is assumed that the oscillator’s active circuit is memoryless compared to
the transmission line, not generating extra state variables.

3In case of the nonlinear transmission line, where� is voltage dependent, the
nominal �-value is used in the following calculations for approximation.
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those from distributed gain elements [21], if any, can be simi-
larly modeled.

Change of variables, , , and
with an impedance-unit parameter renders and

dimensionless, and with the dimension of voltage. With
the new variables, we rewrite (4) into

(5a)

(5b)

where and are rescaled
noise terms that are independent Gaussian random variables
with zero mean and variance

[23]. Equation (5) identifies a random vector
as the noise perturbation vector during

the time interval . Also note that (5) treats voltage and
current variables symmetrically, or, in the equal unit, thanks to
the change of variable, .

Now resorting to Kaertner’s scheme [2], we project onto
the tangential direction of the limit cycle, or the direction of
motion in the state space, which is defined by the state-space

velocity (Fig. 2). The inner product between and the unit

vector is the perturbation along the direction of motion.
Division of this tangential perturbation by the magnitude of the

velocity yields the timing error , which is converted to
the phase error using , where is the oscillation
frequency.4 In sum,

(6)

As stated earlier, Kaertner derived a more general expression
for the phase error using the tangential projection [2], and (6)
is an explicit reduction of Kaertner’s expression, suitable for
the distributed oscillators. Since and are independent
Gaussian random variables with zero mean, is also Gaussian
with zero mean, and its variance is given by

(7)

Since the phase error must accumulate, growing its variance lin-
early with time, (7) can be directly compared with the phase dif-
fusion model (1) to find the phase diffusion rate

(8)

Since and are periodic functions of time, above is
an instantaneous rate at a given time, and it varies periodically
with time. This is because the size of the phase error even for a
fixed noise vector depends on the state of oscillation (where
the state lies on the limit cycle), as indicated by (6), as illus-
trated in Fig. 2, and as mentioned as a hallmark property of the
oscillator phase diffusion [1], [2] in Section II. The periodically

4The detailed projection procedure up to this part of the present paragraph is
generally captured in (16) and (23b) in Kaertner’s paper [2].

varying diffusion rate is usually time averaged over one oscilla-
tion period to yield a constant diffusion rate, which matters over
a long run

(9)

where represents the time average. This concludes our cal-
culation of the direct phase perturbation and the resulting phase
diffusion rate, arising from the distributed noise in the artificial
transmission line.

In the case of a continuous transmission line where
with infinitesimally small sections, the phase diffusion rate
can be directly obtained from (9) by replacing the summations
with integrals and replacing , ,
and with their values per unit length, , , , and (

, , , , )

(10)

where is the spatial coordinate along the line, is the partial
time derivative, and is the wave velocity on the line

(not to be confused with the state-space velocity ).
Note that the time-averaged terms in (9) and (10) depend

on the shape of the limit cycle or the oscillating waveform,
which originates from the state dependency of the phase error
[1], [2]. Therefore, distributed oscillators with differing oscil-
lating waveforms will exhibit different phase noise. To see this
concretely and to interpret the waveform dependency in ther-
modynamic terms, we now apply (9) or (10) to the three trans-
mission-line oscillators [see Fig. 1(b)–(d)], but we start with a
lumped oscillator.

1) Lumped oscillator, Fig. 1(a): The voltage and current
in the tank of an almost sinusoidal oscillator are given
by and . Plugging
these into (9) with , while only taking into account

with to model a parallel loss in the tank, we obtain

(11)

where is the total oscillation energy stored in
the tank and is the tank’s quality factor. This
agrees with Lax’s work [1], and can be directly converted
to the well-known Leeson’s formula [22]. Note that
is the total thermal energy in the tank (corresponding to
noise) because and each stores a mean thermal energy
of according to the equipartition theorem. The ratio
of the thermal energy to the oscillation energy is the
noise-to-signal ratio.

2) Sinusoidal standing-wave oscillator, Fig. 1(b): Voltage
and current standing waves in a continuous trans-
mission line are and

where is the
wavenumber. Plugging these into (10) and performing the
integrals over the line length , we find

(12)
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where is the total energy stored in the trans-
mission line, and is the quality factor
of the line. Note that the phase diffusion rate of the si-
nusoidal standing-wave oscillator above conforms to that
of the lumped oscillator in (11). This is expected and
can be understood in the Fourier domain: although the dis-
tributed voltage and current variables in the transmission
line correspond to a large (or infinite) number of degrees
of freedom in general, in the sinusoidal standing-wave os-
cillator, only one resonance mode of the transmission line
is effectively excited. Like an tank, this resonance
mode possesses only two degrees of freedom, namely, the
electric and magnetic fields (voltage and current standing
waves), each storing a mean thermal energy of . It
is then possible to treat sinusoidal standing-wave oscilla-
tors effectively as lumped oscillators. In fact, using the
Fourier amplitudes as state variables, the dynamical equa-
tions of standing-wave oscillators can be reduced to those
of lumped oscillators. Such reduction was already car-
ried out in the early stage of the phase-noise study for
masers and lasers, whose microwave/optical cavities are
indeed distributed waveguides that support microwave/op-
tical standing waves [24]. The foregoing discussion may
lead the reader to doubting the usefulness of our analysis.
However, as we will show right below that this thermody-
namic argument in the Fourier domain fails in the case of
pulse oscillators, and our analysis becomes necessary.

3) Linear and soliton pulse oscillators, Fig. 1(c) and (d): The
bell-shaped pulse in both linear and soliton pulse oscilla-
tors may be described by the same functional form

with a full spatial width at half
maximum , although the soliton pulse tends
to be sharper (larger ). Therefore, their phase diffusion
rates can be calculated together using (10). Since the pulse
typically spans a length much shorter than the total length
of the line, we can replace the integrals over the line length

in (10) with integrals over the entire -axis,5 i.e.,

(13)

to obtain

(14)

where is the total energy carried by the
pulse. Equation (14) shows that phase noise of the pulse
oscillator improves as the pulse gets sharper, a clear man-
ifestation of the waveform dependency of captured by
the shape factor (time-averaged term) in (10). This can be
physically understood in time domain: noise perturbation
generated at position affects the oscillator’s phase or the
timing of the pulse only when the pulse passes through the
point. Its chance to enter the phase-noise process thus be-
comes smaller as the pulsewidth decreases, yielding lower

5When the pulse reflects at the line ends, the instantaneous phase diffusion
rate ���� can be slightly modified due to superposition of the incident and re-
flected pulses. The result after time averaging, however, remains unaltered.

and better phase noise. Since is approxi-
mately the number of excited harmonic modes that consti-
tute the pulse, (14) may be expressed as

. Had we treated the problem in the
Fourier domain assuming that the modes were indepen-
dent of one another, each mode would store a thermal en-
ergy of according to the equipartition theorem, and

would result. This, however,
is an incorrect result, larger than the true value above by
a factor of . The Fourier domain analysis fails because
the harmonic modes are not independent, as their relative
phases are coupled (or mode-locked) together. This consid-
eration reveals the usefulness and necessity of our analysis
in dealing with pulse oscillators.

Now let us compare the phase diffusion rate of the sinusoidal
standing-wave oscillator, (12), and that of the pulse oscillator,
(14). Their evident difference is again the indication of the wave-
form dependency of . If the standing-wave oscillator and pulse
oscillator have the same amplitude for the same noise level, we
have

(15)

If the two oscillators have the same power dissipation for the
same noise level, we have

(16)

Therefore, for a very sharp pulse, .
This physically makes sense as explained above, i.e., noise at
any given point on the transmission line has less chance to par-
ticipate in the phase-noise process for a spatially localized pulse
than for a standing wave spread over the transmission line, thus,
the pulse oscillator is to have lower phase noise than the sinu-
soidal standing-wave oscillator. Also we note once again that the
Fourier domain argument using the equipartition theorem would
predict an opposite and wrong result, i.e., higher phase noise for
the pulse oscillator that has a larger number of harmonic modes
than the sinusoidal standing-wave oscillator. Since the harmonic
modes in the pulse oscillator are inter-coupled, the equipartition
theorem cannot be applied to the pulse oscillator, as discussed
above.

B. Direct Phase Perturbation Due to Lumped Noise

The direct phase perturbation by the lumped noise from the
active circuit in Fig. 1(b)–(d) can be calculated in a similar
fashion. At the output of the active circuit (Fig. 4), Kirchhoff’s
law gives

(17)

where describes the characteristics of the ac-
tive circuit. Its associated noise source is lumped into
and assumed to be white Gaussian with autocorrelation

. The noise level, rep-
resented by the equivalent output noise conductance , is
generally a function of time, which varies periodically with the
oscillation [4].
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Fig. 4. Circuit model for the active circuit with lumped noise.

As in Section III-A, using change of variables and
, we rewrite (14) into

(18)

where is a Gaussian random variable with zero
mean and variance . This equation identi-
fies as a noise perturbation vector in
the -D state space. By projecting along the tangential di-
rection of the limit cycle and following the same procedure in
Section III-A, we obtain the following phase diffusion rate due
to the direct phase perturbation by the lumped noise for the ar-
tificial transmission line case:

(19)

In the case of continuous transmission line, it becomes

(20)

The time-averaged terms in (19) and (20) once again ex-
hibit the waveform dependency, as a consequence of the state
dependency of the phase error. We again apply these results
to the distributed oscillators in Fig. 1(b)–(d). Evaluation of
(19) and (20) requires knowledge of the specific form of the
time-varying noise level . In each of our experimental
circuits corresponding to Fig. 1(b)–(d), is almost a
constant (Section V). Therefore, a constant is used in the
following calculations.

1) Sinusoidal standing-wave oscillator, Fig. 1(b):
and

in (20) yield

(21)

2) Linear and soliton pulse oscillators, Fig. 1(c) and (d):
At the active circuit end of the line, an incident pulse
is superposed with a reflected pulse. The joint voltage
amplitude is about twice the incident pulse amplitude, or

, assuming linear superposition.6

Using this and (13) in (20), we obtain

(22)

6In the soliton oscillator case, � ��� �� may slightly differ from the linear su-
perposition due to the nonlinear interaction between the oncoming and reflected
pulses, but we do not expect this to significantly change the result.

Comparing (21) with (22), we find

(23)

if the standing-wave and pulse oscillators have the same ampli-
tude for the same lumped noise level, and

(24)

if they have the same power dissipation for the same lumped
noise level. These results are exactly the same as in the case of
distributed noise perturbation: (15) and (16). The results again
indicate that a sharper pulse experiences the lumped noise at

for a shorter period of time, thus yielding a slower phase
diffusion.

We point out that even in the foregoing case of lumped noise,
the analysis has still dealt with the distributed nature: the large
set of voltage and current variables representing the oscillating
electromagnetic wave are distributed along the transmission
line, even if the noise source is lumped. The analysis has shown
how a perturbation even at one fixed point affects the collective
oscillation of the entire distributed system.

Thus far we have considered only the direct phase perturba-
tions along the tangential directions of the limit cycle, while not
addressing the effect of the amplitude perturbation. As shown
by Kaertner, the amplitude perturbation can contribute substan-
tially to phase diffusion through amplitude-to-phase-noise con-
version in certain oscillators [2]. This effect is not of great im-
portance in the standing-wave and linear pulse oscillators for the
oscillation frequency of the linear transmission line with rea-
sonably high7 is essentially independent of oscillation ampli-
tude. Therefore, the analysis above is sufficient for the standing-
wave and linear pulse oscillators, and it remains valid that the
latter has less phase noise than the former. In contrast, in the
soliton pulse oscillator, the amplitude perturbation will translate
to timing perturbations through soliton’s amplitude-dependent
propagation speed in the nonlinear transmission line, which can
contribute significantly to phase noise. We now turn to this issue
for the soliton oscillator.

IV. AMPLITUDE PERTURBATION AND ITS PHASE-NOISE EFFECT

IN SOLITON OSCILLATORS

This section examines how amplitude perturbation con-
tributes to phase noise in the soliton oscillator through
amplitude-to-phase error conversion. We again use Kaertner’s
orthogonal projection scheme, but we do not carry it out in full
to determine the exact amplitude-to-phase error conversion,
which requires diagonalizing large matrices corresponding to
oscillator’s dynamical equations linearized in proximity of
its limit cycle. Instead, we evaluate the effect by devising an
intuitive phenomenological approach that captures the essence
of amplitude-to-phase error conversion in the soliton oscillator.

A soliton pulse propagating in a nonlinear transmission line
can be described as ,

7As seen in Section VI, measured � is about 100.
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Fig. 5. Amplitude perturbation in the �� -D state space. Amplitude error��
is translated to timing error�� due to the amplitude-dependent speed.

where both the spatial pulsewidth and wave ve-
locity depend on the amplitude . In general, a taller soliton
has a narrower width and propagates faster. The exact depen-
dency is determined by the specific form of the line’s nonlin-
earity or the capacitance–voltage relation of the varactors. One
particularly well-known example is provided in Appendix [25].
With the pulse waveform above, the limit cycle is now pa-
rameterized not only in terms of time , but also in terms of am-
plitude .8 Just like giving the direction of phase/timing
perturbation, defines the direction of amplitude perturba-
tion in the state space. Following a procedure similar to that in
Section III, we now calculate the amplitude error by projecting
a noise perturbation vector along the direction defined by
(Fig. 5).

A. Indirect Phase Perturbation Due to Distributed Noise

For distributed noise, in
Section III-A acts again as the noise perturbation vector. It
yields the following amplitude error:

(25)

is Gaussian with zero mean and variance

(26)

Unlike phase perturbation, the amplitude perturbation puts
the oscillation off the limit cycle and is corrected in finite time
by the oscillator’s dynamics. Thus, the amplitude error cannot
accumulate indefinitely, but decays exponentially as
(Fig. 5) where is the initial amplitude error and is the life
time of the decay, which is determined by the oscillator’s loss
and gain characteristics. Since the soliton propagation velocity

8A similar parametrization of the limit cycle was used by Haus [26] in his
study of the noise processes in soliton lasers.

is a function of , this decaying amplitude perturbation will
incur a velocity variation of according to

which will translate to a total position shift of

This is equivalent to a timing error of

Therefore, the total contribution to the timing uncertainty by
generated during is

(27)

Plugging (26) into (27) and comparing the result with (1), we
find the phase diffusion rate due to the amplitude perturbation
to be

(28)

In continuous coordinate, this becomes

(29)

The phase diffusion rate depends on: 1) the sensitivity of
amplitude to noise perturbations, captured by
and ; 2) the sensitivity of velocity to amplitude

; and 3) lifetime , i.e., how fast the amplitude error
is corrected by the oscillator.9

B. Indirect Phase Perturbation Due to Lumped Noise

Similar results can be obtained for the lumped noise source
described in Section III-B

(30)

for an artificial nonlinear transmission line, and

(31)

for a nonlinear line approaching the continuous limit.

9In [2], the decay behavior of amplitude error and its translation to phase error
are generally captured in (20) and the first term of (26).
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C. Indirect Versus Direct Phase Perturbations

Let us first note that the total phase diffusion rate in a soliton
oscillator is a sum of caused by direct phase perturbations
and induced by amplitude perturbations. This simple addi-
tion is possible because the amplitude perturbation [e.g., (25)]
and the phase perturbation [e.g., (6)] are orthogonal or uncor-
related to each other. This orthogonality can be checked by
noticing that and in (25) are even functions of ,
whereas and in (6) are odd.

Given this simple addition, we may directly compare
and to see which process contributes more to the

total phase diffusion rate. For a concrete comparison, we
use the well-known soliton model that takes a waveform of

with specific expressions
for and found in the Appendix. With this soliton,
(29) yields

(32)

for distributed noise sources. Comparing this with of (14)
that is caused by the same distributed noise sources, we have

(33)

Exactly the same relationship holds in the case of lumped noise
perturbations, according to (20) and (31) if is a constant,
which is the case in our experiment. As seen, the ratio depends
largely on the velocity-amplitude relation and the life time of
amplitude errors. can be far larger than , which is the
case in our experiment (see Section V).

V. EXPERIMENT

A. Oscillator Prototypes

For experimental proof of concept, we designed the sinu-
soidal standing-wave, linear pulse, and soliton pulse oscillators
of Fig. 1(b)–(d) in the lower microwave region. All three oscilla-
tors are represented by one schematic in Fig. 6(a). The operation
of the active circuit, whose topology is shared by all oscillators,
is found in [17]. By adjusting component parameters, the ac-
tive circuit can amplify small voltages and attenuate large volt-
ages, or vice versa, to produce sinusoidal standing-wave or pulse
oscillations. The transmission line in Fig. 6(a) can be linear or
nonlinear: the former is for the standing-wave and linear pulse
oscillators; the latter is for the soliton pulse oscillator.

The design was implemented on printed circuit boards using
discrete components. The standing-wave and linear pulse oscil-
lators were constructed on the same board as one physical struc-
ture [see Fig. 6(b)], as they share the same linear line (24
sections) and the same active circuit topology. The component
parameters in the active circuit are adjusted to switch between
standing-wave and linear pulse oscillation. The soliton pulse os-
cillator on a separate board [see Fig. 6(c)] using a nonlinear line
consisting of 24 inductor–varactor sections is an adoption from
[17], where we reported the operation of the soliton oscillator.

Fig. 6. (a) Schematic of a circuit that can work as a standing-wave, linear
pulse, or soliton pulse oscillator, depending on active circuit component param-
eters and transmission line choice. (b) Implemented circuit that can work as a
standing-wave or linear pulse oscillator, depending on active circuit component
parameters. (c) Implemented soliton oscillator, adopted from [17].

The oscillators produced desired oscillation waveforms. A
6-V battery was used for a stable power supply. The waveforms
were monitored using an Agilent Infiniium 54855A 6-GHz os-
cilloscope with Agilent 1156A 100-k active probes. Fig. 7
shows steady-state oscillation waveforms measured at different
line positions in each of the three oscillators. Waveform param-
eters are summarized in Table I. The oscillation frequencies are
around 100 MHz for all oscillators. The harmonic contents of
the pulse oscillators extend well into the microwave regime.

B. Phase-Noise Measurement

Fig. 8 shows the phase-noise measurement setup. The trans-
mission line’s open end is connected to an Agilent E5052B
phase-noise analyzer via an -section impedance matching net-
work and a Mini-Circuits ZFL-11AD amplifier. The matching
network is to ensure that the line sees a high impedance at what
is designed to be an open end so that almost total reflection can
occur as intended. The amplifier enhances the weak signal cou-
pled out from the oscillator.

Fig. 9 shows the measured phase noise of the three oscil-
lators. For offset frequencies higher than 10 kHz, the phase-
noise data follow closely to an trend. At lower offset fre-
quencies, the slope is slightly greater than 20 dB/dec, but still
closer to 20 dB/dec than 30 dB/dec. This indicates that the noise
sources in all oscillators are dominantly white. As predicted, the
linear pulse oscillator has a better phase noise than the standing-
wave oscillator. The soliton oscillator, despite the soliton pulse’s
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Fig. 7. Measured oscillations. (a) Near-sinusoidal standing-wave oscillator
with amplitude � � � V. (b) Linear pulse oscillator with pulse amplitude
� � ��� V and width � spanning nine and one-half �� sections. At the
open end joint amplitude is �� due to linear superposition of incident and
reflected pulses. (c) Soliton pulse oscillator with � � ��� V and � spanning
three �� sections. At the open end joint amplitude is ���� due to nonlinear
superposition [17].

TABLE I
WAVEFORM PARAMETERS

sharp width, has the worst phase noise due to its amplitude-to-
phase-noise conversion, as predicted. Thus, the measurements
agree with the core of our theory, which we will further examine
quantitatively in Section VI.

Fig. 8. Phase-noise measurement setup.

Fig. 9. Measured phase noise for the three oscillators.

VI. MEASUREMENT-THEORY COMPARISON

We here compare the measured phase noise to phase noise
calculated using our theory. For the calculation, we first deter-
mine the intensity of the noise sources in the oscillators.

A. Intensity of Noise Sources

We start with the lumped noise from the active circuit. We
observed in all three oscillators that the active circuit remains
inactive, except at the rising edge of the voltage signal
at the left end of the line [see Fig. 6(a)] (in a continuous co-
ordinate, corresponds to ). The rising edge of
triggers transistors , , and in Fig. 6(a) so that each pulls
a constant current of about 10 mA until reaches maximum.
During this process, energy is injected to provide gain, and also,
appreciable noise is injected, as illustrated in Fig. 10.

The intensity of the active noise injected during the rising
edge could be measured at dc by biasing the circuit with the
same currents (10 mA), as experienced at the rising edge.
Such measurement, however, was stymied in our experiment,
for 10-mA dc current exceeds the dc breakdown current of
transistor . Even if transistors that could survive the dc
current are chosen, the transistors’ temperature with the large
continuing dc current would be higher than its actual value
during the oscillator operation, thus, not necessarily providing
a faithful replica of the actual active noise level. We thus chose
to carry out the measurement scheme in SPICE simulation. The
intensity of the active circuit noise (intensity of in Fig. 4
multiplied by ) during the rising edge of was estimated to
be V Hz for all three oscillators.
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Fig. 10. Time-domain illustration of the lumped noise from the active circuits.

The active noise was negligibly smaller during the rest of
dynamics (Fig. 10).

For the phase-noise calculation, we can effectively reduce this
time-varying active noise to a constant noise. Imagine we use

V Hz throughout the entire
dynamics in calculating the phase diffusion rate [(19)/(20)], as
if it persisted all the time. During the “flat” part of the wave-
form, i.e., during the absence of pulse events or transition edges
when there is no actual appreciable noise, the fictitious noise
does not contribute to (19)/(20), as , thus, its use for
the flat duration is justified. During the falling edges, the ficti-
tious noise spuriously contributes the same amount to (19)/(20)
as the real noise during the rising edges does, for the oscillation
waveforms are almost symmetric about their maxima. Hence,
if we use half of the actual noise intensity injected only during
the rising edge, i.e., V Hz, as a
constant noise intensity the entire time, it will yield the correct
phase diffusion rate. We will use this constant noise in the fol-
lowing analysis for all three oscillators.

The distributed noise in the transmission line is far smaller in
our experimental circuits. For both linear and nonlinear lines,
the measured is about 100 at the oscillation frequency and
measured is 50 , thus, the total noise power of the lossy
lines is V Hz. This is three
orders of magnitude smaller than the lumped active noise. In the
following calculation of phase noise, we only use the dominant
lumped active noise. The oscillation is still distributed while the
noise is injected at a fixed point.

B. Calculated Phase Noise

By plugging the relevant waveform parameters of Table I
and the effective constant active noise level into (21) and (22),
we find the phase diffusion rate, , due to direct tangential
phase perturbation, for all three oscillators (see Table II). The
standing-wave, linear pulse, and soliton pulse oscillators line up
in the decreasing order of , owed to the decreasing waveform
width in that order, as explained earlier. In the soliton oscillator,
although is substantially small, we must also consider the
phase diffusion rate due to the indirect phase perturbation

TABLE II
CALCULATED PHASE DIFFUSION RATES AND PHASE NOISE

Fig. 11. Measured decay behavior of amplitude perturbation in the soliton os-
cillator. (a) Measurement setup. (b) Decay behavior after an amplitude pertur-
bation ��. (c) � extraction. (d) ����� extraction.

caused by amplitude perturbation and its conversion to phase
error. It is shown in Table II as well.

The calculation of in the soliton oscillator is done as fol-
lows. Equation (33) may be rewritten into

(34)

by using soliton’s round-trip time in the nonlinear
line. To estimate and , we perturb the soliton’s ampli-
tude with a short pulse produced by an Agilent 81150A func-
tion generator [see Fig. 11(a)]. From the decaying behavior of
the amplitude perturbation, we measure and of the de-
caying pulse, as illustrated in Fig. 11(b). From the slopes of

versus and versus [see Fig. 11(c) and (d)], we
then obtain and

ns, which are consistent with the standard soliton model
(see the Appendix). Plugging these measured values in (34)
yields Hz,
which enter Table II. In the soliton oscillator, the indirect phase
perturbation contributes about ten times more to the total phase
noise than the direct phase perturbation. The corresponding cal-
culated phase-noise values for all oscillators at 100-kHz offset
are also shown in Table II. The measurement errors in and
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Fig. 12. Standard nonlinear transmission line model.

give a 1.2-dB variation in the phase-noise calcula-
tion for soliton pulse oscillator.

C. Measurement-Theory Comparison

Although the calculated and measured phase noise fall within
proximity to each other (Fig. 9; Table II), their absolute com-
parison for each oscillator is not quite meaningful, as the ac-
tive noise level was only estimated in simulation, because it
could not be measured due to the transistor breakdown (see
Section VI-A). Since the actual active noise level, albeit not ex-
actly known, is expectedly the same for all three oscillators (see
Section VI-A), it would be meaningful to compare the measured
and calculated relative phase-noise differences amongst the os-
cillators. This is because (21) and (22) contain the same active
noise term. The relative examination will also facilitate showing
the essence of this study, i.e., how oscillation waveforms and
their physical nature influence the phase noise. This relative ex-
amination we do in the following.

First, when compared to the standing-wave oscillator,
the soliton oscillator has a 2.8-dB worse phase noise in
calculation (Table II) and a 3.9-dB worse phase noise in
measurement (Fig. 9). They are close, consistently explaining
that in the soliton oscillator, despite the soliton’s sharpness
that would yield superb phase noise if only the direct phase
perturbation existed, the indirect phase perturbation through
amplitude-to-phase error conversion significantly contributes
to phase noise, offsetting the benefit of soliton’s sharpness.
The slight difference between 2.8–3.9 dB may be explained
by measurement errors and that our analysis used constant
varactor capacitance values for the nonlinear line in the soliton
oscillator, while it varies by four times as the varactor voltage
changes with the oscillation.

Second, in comparison to the standing-wave oscillator, the
linear pulse oscillator has a 3.8-dB better phase noise in cal-
culation (Table II) and an 8.0-dB better phase noise in mea-
surements (Fig. 9). They consistently show the essence, i.e., the
phase-noise superiority of the linear pulse oscillator due to its
short pulsewidth. The numerical difference may be attributed to
that in the actual linear pulse oscillator, the injected noise could
have been smaller due to the detailed difference in its operation.
Nonetheless, the expected reduction of phase noise for a pulsed
waveform is consistently confirmed.

VII. CONCLUSION

We studied in the time domain how noise perturbs an os-
cillating electromagnetic wave in distributed oscillators to de-
termine phase noise. In addition to offering an explicit physi-
cally intuitive time-domain method to analyze phase noise in

distributed oscillators, this study provides the following few
findings.

1) While the thermodynamic argument in the Fourier domain
fails, our time-domain analysis is suitable in analyzing
phase noise in pulse oscillators, where a number of excited
modes constituting a pulse are interdependent.

2) Phase noise depends on the shape of the electromagnetic
wave: the linear pulse oscillator has less phase noise than
the sinusoidal standing-wave oscillator, as a sharp electro-
magnetic pulse has a reduced time period to interact with
noise at any given position.

3) The soliton oscillator, however, can have a larger phase
noise than the standing-wave oscillator despite the
soliton’s sharpness due to amplitude-to-phase error
conversion.

This study highlights a couple of useful design strategies.
First, the linear pulse oscillator can achieve superb phase noise
if its active circuit, solely responsible for pulse shaping, is de-
signed to produce a very narrow pulse. Second, if the ampli-
tude-to-phase-noise conversion in the soliton oscillator can be
mitigated by a proper active circuit design to reduce amplitude
error’s lifetime, due to the soliton’s sharpness, the soliton oscil-
lator can yield superb phase noise.

APPENDIX

SOLITON MODEL IN NONLINEAR TRANSMISSION LINE

The nonlinear transmission line is constructed as an in-
ductor–varactor ladder network (Fig. 12). A standard model
for the voltage dependency of the varactor capacitance is

[25]. The corresponding soliton
propagating on the line is with

which indicates that a taller soliton pulse has a narrower width
and travels faster. The sensitivity of the oscillation period to
amplitude in the soliton oscillator is given by

Since V from the SPICE model and V,
sections, , and

(taking sections and
), which are in good agreement with our measurements.
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