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A wealth of effort in photonics has been dedicated to the study and engineering of surface 
plasmonic waves in the skin of three-dimensional bulk metals, due largely to their trait of 
subwavelength confinement. Plasmonic waves in two-dimensional conductors, such as 
semiconductor heterojunction and graphene, contrast the surface plasmonic waves on 
bulk metals, as the former emerge at GHz-THz and infrared frequencies well below the 
photonics regime and can exhibit far stronger subwavelength confinement. This review 
elucidates the machinery behind the unique behaviors of the two-dimensional plasmonic 
waves, and discusses how they can be engineered to create ultra-subwavelength 
plasmonic circuits and metamaterials for infrared and GHz-THz integrated electronics. 

1. Introduction 

Surface plasmons propagating in the skin of a bulk––three-dimensional (3D)––metal with a 
finite penetration depth have nucleated a great deal of research in photonics, because they can 
travel up to ~10 times slower than the free-space light (speed c), and thus can exhibit 
subwavelength confinement with proportionally reduced wavelength [1-4]. In contrast to these 
surface plasmons on bulk metals that emerge in the optical frequencies, the plasmons in 
GaAs/AlGaAs two-dimensional (2D) electron gas (2DEG) and graphene, where electrons are 
perfectly confined into two dimensions, appear at infrared and THz-GHz frequencies, near or in 
the electronics regime. Furthermore, the 2D plasmons can achieve much greater subwavelength 
confinement [5-7] with their velocity being able to reach well below c/100 [6,8].  

By shaping the 2D conductor geometry with the standard fabrication technology and 
manipulating 2D plasmonic waves via reflection, interference, and coupling according to the 
geometry, a variety of ultra-subwavelength 2D plasmonic circuits and metamaterials, such as 
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bandgap crystals, interferometers, resonant cavities, and negative refractive index structures, can 
be created [6,8,9] for GHz-THz and infrared integrated electronics with applications in imaging, 
large molecule spectroscopy, and sub-millimeter wave astronomy. The ultra-subwavelength 
confinement of these 2D plasmonic structures suggests exciting possibilities for sub-diffraction-
limit imaging, near-field operation, and drastic miniaturization.  

This review paper will first elucidate the unique behavioral characteristics of plasmonic 
waves in 2D conducting media and their physical origin (Section 2). Then we will delineate how 
2D plasmonic waves can be engineered to build functional circuits and metamaterials, using 
some recent device advances as examples (Section 3).  

2. Physical Characteristics of 2D Plasmonic Waves  

Perturbation of the equilibrium electron density distribution in a solid-state conductor––
whether 3D or 2D––results in Coulomb restoring force, which drives local electrons back and 
forth collectively to propel a plasmonic wave. The defining energetic component of a plasmonic 
wave is the kinetic energy of the collectively oscillating electrons, which largely accounts for the 
plasmons’ behavioral difference from light waves, in particular, the reduced plasmonic velocity 
and subwavelength confinement. The kinetic energy is far more strongly pronounced in 2D 
plasmonic waves than in 3D bulk metal surface plasmonic waves [6,9]. Consequently, the 
behavior of 2D plasmons diverges even more significantly from light waves than that of 3D 
surface plasmons does; for example, and notably, 2D plasmons can achieve a significantly lower 
velocity thus a much greater subwavelength confinement than 3D surface plasmons. This section 
explicates the origin of the unique behaviors of 2D plasmonic waves in comparison to 3D bulk 
metal surface plasmonic waves.  

(a) Transmission Line Model for 2D Plasmonic Medium  

As will be discussed shortly, the kinetic energy of the collectively oscillating electrons in a 
2D plasmonic wave can be modeled using kinetic inductance of non-magnetic origin [6,9]. On 
the other hand, the electric potential energy associated with the Coulomb restoring force that 
drives local electrons into the plasmonic oscillation can be modeled using electrical capacitance. 
Besides the Coulomb restoring force, electron degeneracy pressure serves as another restoring 
mechanism upon the disturbance of the equilibrium electron density distribution, and this effect 
can be modeled using quantum capacitance [5,10-12]. This quantum pressure, however, becomes 
conspicuous only when the Coulomb restoring force is substantially weakened by, for example, 
placing a gate very proximate to the 2D plasmonic medium and reducing the Coulomb 
interaction range; throughout this paper, we will ignore the quantum effect. Then the 2D 
plasmonic medium can be modeled as a transmission line consisting of distributed kinetic 
inductance Lk per unit length and distributed electrical capacitance C per unit length (Fig. 1) 
[6,9,13]. This plasmonic transmission line differs from the standard electromagnetic transmission 
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line in that the latter employs magnetic inductance instead of kinetic inductance. The plasmonic 
velocity is then vp = 1/(LkC)1/2, which corresponds to the plasmonic dispersion relation.  

We first evaluate Lk in the 2D conductor case where electrons have finite effective mass, 
m*, such as in GaAs/AlGaAs 2DEG (width W and length l) [9]. Let a time-dependent electric 
potential V(t) be applied along the length to induce an electric field V(t)/l. Here the length l is 
chosen so short that the electric field does not exhibit a spatial variation; this is not a limiting 
assumption, as the goal is to derive the kinetic inductance per unit length. Inertial accelerations 
occur, for which Newton’s equation of motion for an electron is -e(V/l) = m*(dv/dt) (v: electron 
velocity). This translates to -e(V/l) = iωm*v in the frequency domain. From this and by noting 
that the current due to the electrons’ motion is I = -n2DevW (n2D: conduction electron density per 
unit area), the 2D conductor’s impedance is obtained: V/I = iω×(m*/n2De2)(l/W). This is inductive 
impedance of non-magnetic origin, with the kinetic inductance per unit length given by 

Lk = (m*/n2De2) × (1/W).            (2.1) 

By using kF
2 = 2πn2D and EF = ħ2kF

2/(2m*) (kF: Fermi wavenumber, EF: Fermi energy), we can 
rewrite Eq. (2.1) as: 

Lk = (πħ2/e2) × (1/EF) × (1/W).                  (2.2) 

The kinetic energy of the accelerating electrons is intimately linked to the kinetic 
inductance. With the velocity v of an electron at a given time, the total kinetic energy Ktotal of the 
electrons in the 2D conductor strip is expressed Ktotal = m*v2/2× n2DWl. Since the total current is I 
= -n2DevW, we can write  

Ktotal = 1/2 × (Lk l) × I2,                         (2.3) 

 

Figure 1. Transmission line model of a 2D plasmonic medium. If the medium is gated, the gate serves 
as the ground. For an ungated medium, the ground is the potential of the free space far enough away. 
dx: infinitesimal segment length of the 2D plasmonic medium.  
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where Lkl is the total kinetic inductance of the 2D conductor strip. Eq. (2.3) is analogous to the 
energy of a magnetic inductor with current I given by 1/2 × (magnetic inductance) × I2.  

Alternatively, we can instead calculate Lk by first evaluating the total kinetic energy Ktotal 
and current I in the k-space (k: electron wavenumber) and then relating them through the energy-
current relation, Eq. (2.3) [9]. With the electric field applied along the length of the 2D conductor 
strip to which direction we assign a negative x-axis, the 2D Fermi disk with diameter kF whose 
center originally lies at the k-space origin (Fig. 2, A) shifts towards the positive kx-axis, 
increasing the total kinetic energy and producing a current I. Figure 2, B shows the Fermi disk 

shift by ∆k <<kF, after time ∆t. The total kinetic energy increase is: 

Ktotal = Wl 2
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where the factor 2 in each integrand accounts for spin degeneracy and )(kE
r

= ħ2k2/(2m*)  is the 

energy of a single electron whose wavenumber is k. Keeping to the lowest order of ∆k, it is a 
straightforward exercise to show that Eq. (2.4) leads to 

Ktotal = WlEF
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On the other hand, the current magnitude I is given by: 
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Figure 2. Shift of the Fermi disk in the k-space in response to an electric field. 
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where )(kvx

r
 is the x-component of the velocity of an electron whose wave vector is 

r
k , that is,  

)(kvx

r
 = (ħk/m*)  cosθ, where the integration variable θ is in reference to Fig. 2. Keeping to the 

lowest order of ∆k, one can show that Eq. (2.6) reduces to  

I = WeEF

πh
× ∆k .                       (2.7) 

Eqs. (2.5) and (2.7) satisfy the energy-current relation of Eq. (2.3) with Lk given by:  

Lk = (πħ2/e2) × (1/EF) × (1/W),                 (2.8) 

which is identical to the Lk-expression of Eq. (2.2).  

The second approach to calculate Lk is more general than the first approach, because the 
second approach can be applied to any arbitrary single electron E-k dispersion. In particular, in 
the linear E-k dispersion case of graphene––another example of 2D conductor––where individual 
electrons behave as massless particles [14,15], the first approach cannot be used but the 

calculation in the second approach can be repeated now with )(kE
r

=ħvFk, )(kvx

r
 = vFcosθ, and 

with the appropriate degeneracy factor including both spin and valley degeneracies (vF: Fermi 
velocity) [16,17]. The application of the second approach to the calculation of the graphene 
kinetic inductance turns out to be identical to Eq. (2.8).  

The per-unit-length capacitance, C, in the 2D plasmonic transmission line [Fig. 1], which 
models the Coulomb restoring force in the plasmonic wave, depends on surroundings of the 
plasmonic medium. For example, if a 2D conductor strip with width W has no other conductors 
nearby, C for a given plasmonic wavenumber kp is given by [18,19]  

C =2εkpW,        (2.9) 

where ε is the electric permittivity of the surroundings. This is obtained by calculating the 
electric energy of the sinusoidal charge density distribution at a plasmonic wavenumber, kp.  

As the plasmonic velocity is vp = ω/kp = 1/(LkC)1/2, we can now obtain the detailed 
expression for the 2D plasmonic dispersion. In the case of the stand-alone 2D conductor where C 
is given by Eq. (2.9), by using Lk of Eq. (2.8), whether the 2D conductor is semiconductor 2DEG 
or graphene, we obtain:  

p
F

k

p k
Ee

CL

k
2

2

2 hεπ
ω == .       (2.10) 

Calculation in the random phase approximation framework yields a more general form of the 2D 
plasmonic dispersion relation [5,20], but in the limit where quantum effects such as electron 
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degeneracy pressure and interband transitions can be ignored, the general dispersion reduces to 
Eq. (2.10) for both semiconductor 2DEG and graphene [5,21].  

If an external conductor is proximate to the 2D conductor, C is altered. A case of particular 
interest is a gated 2D conductor. If the separation, d, between the gate and 2D conductor is much 
smaller than the plasmonic wavelength (kpd << 1), C becomes the parallel plate capacitance per 

unit length, C =εW/d. The 2D plasmonic dispersion then becomes linear for both semiconductor 
2DEG and graphene [11,22]:  

ω =
kp

LkC
= kp

e2EFd

επh2
.         (2.11) 

As compared to the stand-alone 2D conductor, the gated configuration yields smaller plasmonic 
wavelength and velocity [Eqs. (2.10) vs. (2.11)]. This is because the gate shortens the Coulomb 
interaction range. For the same reason, as d is shortened, the plasmonic velocity and wavelength 
are further reduced. These 2D plasmonic dispersions for stand-alone or gated cases have been 
experimentally demonstrated for both semiconductor 2DEG [6,8] and more recently for graphene 
[7,23,24]. 

(b) 2D Plasmons v. 3D Surface Plasmons 

While we have focused on the transmission line model for the 2D plasmonic medium, a 
similar transmission line model consisting of kinetic inductance and electrical capacitance can be 
used to model the surface plasmonic medium in the skin of the 3D bulk metal with the finite 
penetration depth, for the two main energetic components of the surface plasmonic wave on the 
3D metal are also the kinetic energy of collectively oscillating electrons and the electric potential 
energy corresponding to the Coulomb restoring force [19]. In contrast, light waves possess 
magnetic and electric energies as two energetic components. By comparison one can see that the 
kinetic energy of plasmonic waves (whether 2D plasmons or 3D surface plasmons) is responsible 
for their behavioral divergence from light waves.  

To describe the behavioral difference between 2D plasmonic waves and 3D metal surface 
plasmonic waves, we now evaluate the kinetic inductance associated with the 3D surface 
plasmonic wave. The collective oscillation of electrons in 3D surface plasmonic waves occurs 
within the skin of a bulk conductor, whose frequency-dependent penetration depth, δ, decreases 
with increasing frequency. The per-unit-length kinetic inductance of this skin with width W can 
be derived by considering inertial acceleration of electrons therein, as in the first approach given 
in the previous subsection (for 3D conductors, there is no particular reason to consider massless 
electrons):  

Lk,skin = (m*/n3De2) × (1/Wδ),              (2.12) 
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where n3D is conduction electron density per unit volume. Using kF
3=3π2n3D and EF=ħ

2kF
2/(2m*), 

we can rewrite Eq. (2.12) into  

Lk,skin = (3π2
ħ

2/2e2) × (1/EF) × (1/W) × (1/kFδ).            (2.13) 

Eqs. (2.13) and (2.8) show that kinetic inductance in either 3D or 2D case increases as the total 
number of electrons is reduced. This can be understood as follows. When there are fewer 
electrons, they need to accelerate to a proportionally higher velocity to produce the same current. 
The total kinetic energy then becomes larger, as it is proportional to the number of electrons but 
to the square of the electron velocity. Since we have fixed the current, the kinetic inductance 
then should be larger, according to Eq. (2.3).  

When 2D kinetic inductance Lk of Eq. (2.8) and 3D kinetic inductance Lk,skin of Eq. (2.13) 
are juxtaposed, the 1/(kFδ) factor in Lk,skin makes an apparent difference. Since the penetration 

depth δ decreases with frequency in the 3D surface plasmonic dynamics, Lk,skin increases with 

frequency; this is essentially because the reduced δ decreases the number of conduction electrons 

participating in the surface plasmonic wave. At frequencies below the optics regime, δ is large 
enough to render Lk,skin unappreciable as compared to the magnetic inductance of the surface 
plasmonic medium. Hence, it is difficult to observe surface plasmons below the optics regime 
with 3D metals, and 3D surface plasmonic dispersion curve deviates away from the light 
dispersion line only towards the optics regime (Fig. 3). By contrast, Lk of the 2D plasmonic 
medium has no frequency dependency, as there is no such frequency-dependent penetration 
depth where electrons are confined perfectly into two dimensions. Moreover, Lk is orders of 
magnitude larger than the magnetic inductance of the 2D conductor. Therefore, the 2D 
plasmonic wave emerges far below the optics regime, with its dispersion curve deviating 
significantly away from the light line at these low frequencies (Fig. 3).  

 

Figure 3. (a) Illustration of the charge, electric field (gray arrows), and magnetic field (blue arrows) 
associated with surface plasmonic wave on 3D bulk metal and with 2D plasmonic wave in an ungated 
2D conductor. (b) Essence-capturing hypothetical dispersion curves for light wave, 3D surface 
plasmonic wave, ungated 2D plasmonic wave, and gated 2D plasmonic wave.  



 8 

Even when Lk,skin becomes appreciable in the optics regime with small enough δ and 

surface plasmonic dynamics is more pronounced, kFδ is still much larger than 1, leaving Lk,skin 
<< Lk (in principle Lk,skin can grow indefinitely as frequency grows toward the surface plasmon 
resonance frequency with δ approaching 0, but in practice loss obscures such excitations). The 
Lk,skin << Lk inequality is further enhanced by the fact that EF appearing in both Lk,skin and Lk is 
typically much larger with the 3D bulk metal such as gold than with semiconductor 2DEG and 
graphene. Overall, Lk,skin even in the optics regime is far smaller than Lk by 2 ~ 3 orders of 

magnitude. As vp ∝ [kinetic inductance]-1/2, 2D plasmonic velocity is far smaller than 3D surface 
plasmonic velocity typically limited to ~ c/10 [1] (Fig. 3), achieving far greater ultra-
subwavelength confinement. One can further slow the 2D plasmonic wave by placing a gate 
proximate to the 2D conductor and thus by shortening the Coulomb interaction range within the 
2D conductor (i.e., by increasing C; note that vp = 1/(LkC)1/2) [Eq. (2.10) v. Eq. (2.11); Fig. 3]; in 
fact, with top-gated GaAs 2DEG, we were able to obtain 2D plasmonic velocities as low as ~ 
c/700 [6].  

 (c) Effect of Electron Scattering 

Electron scatterings with phonons and lattice impurities in the 2D plasmonic medium are 
manifested as per-unit-length ohmic resistance R, which can be added to the transmission line 
model of Fig. 1 in series with Lk. The quality factor of the 2D plasmonic medium is then given 
by  

Q = ωLk/R = ωτ,                 (2.14) 

where the electron scattering time τ factors in through R (note that we here are not considering 
loss mechanism due to interband transitions, for in practice many plasmonic applications can be 
considered at frequencies where such transitions do not occur). The plasmonic dynamics can be 

observed as far as Q is not too far below 1, i.e., if τ is long enough to accommodate an 
appreciable kinetic energy increase (if Q is much larger than 1, many cycles of collective 
electron oscillation are sustained between scattering events, making the plasmonic wave very 
easily observable). To observe 2D plasmonic waves at GHz frequencies, τ has to be increased, 

which can be done by cryogenic operation, as applicable for GaAs/AlGaAs 2DEG where τ is 
limited by phonon scattering down to substantially lowered temperature, but not as well with 
graphene where impurity scattering is significant even at room temperature. At THz and infrared 
frequencies, room temperature plasmonic operation is possible with both semiconductor 2DEG 
and graphene, as experimentally demonstrated [7,25].  

 3. Applications – Ultra-Subwavelength 2D Plasmonic Circuits and Metamaterials 

A 2D plasmonic medium can be readily shaped into a designer planar geometry by using 
the standard fabrication technology. 2D plasmonic waves then can be manipulated by reflections, 
interferences, and superposition according to the geometry. In this way, one can create a variety 
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of GHz-THz and infrared 2D plasmonic circuits and metamaterials [6,8,9]. Due to their ultra-
subwavelength confinement, these 2D plasmonic functional structures are amenable to near-field 
operation, sub-diffraction-limit imaging, and drastic miniaturization.  

An example of 2D plasmonic circuits is plasmonic bandgap crystals, which can be created 
by introducing structural periodicity into a 2D conductor. These plasmonic bandgap crystals are 
analogous to photonic bandgap crystals [26,27], but the former operate far below the optical 
frequencies and exhibit much greater subwavelength confinement. A proof-of-concept 2D 
plasmonic crystal, which W. F. Andress et al built from GaAs/AlGaAs 2DEG and operates in the 
GHz frequencies at cryogenic temperature (4.2K), is shown in Fig. 4 [6]. The 2DEG was 
periodically shaped by spatially modulating its width (Fig. 4a), and was placed between 
electromagnetic metallic coplanar waveguides (CPWs), consisting of signal (S) & ground (G) 
lines, where the S lines couple to the 2DEG via ohmic contacts (Figs. 4a-b). The 2DEG is placed 
under a metallic gate, which is merged with the CPWs’ G lines; in this way, the top gate not only 
enhances the subwavelength confinement of 2D plasmonic waves, but serves as the proper 
plasmonic ground. Due to the crystal periodicity, the magnitude of the transmission parameter s21 
obtained from microwave scattering measurements shows a bandgap (24~34 GHz) around the 
first Brillouin-zone boundary (Fig. 4c), where the crystal periodicity equals half the plasmonic 

 

Figure 4. (a) 2D plasmonic crystal with GaAs/AlGaAs 2DEG. (b) Cross-sectional schematic. (c,d) 
Measured s21 magnitude and phase. Reprinted with permission from Nano Lett. 12, 2272 (2012). 
Copyright © 2012 American Chemical Society.  
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wavelength, indicating vp ~ c/300. The phase of the measured s21 is a product of plasmonic 
wavenumber kp and the crystal length, thus, s21’s phase over the frequency (Fig. 4d) yields the 
dispersion, which also shows the bandgap behavior. Its passband slope, which is linear due to the 
gating [Eq. (2.11)], consistently indicates vp ~ c/300.  

The shaping principle can be applied with a wealth of versatility. For instance, one can 
subtly vary the crystal shape to introduce an appreciable behavioral difference. Fig. 5a shows an 
example variation [6], where the transitions between narrow and wide 2DEG sections are abrupt. 
Plasmonic dynamics here is not a merely disturbed horizontal routing as in Fig. 4. Vertical 
routing of plasmons to and from the ends of the thick sections (stubs) must be considered; in fact, 
these stubs serve as plasmonic cavities that resonate by forming a λp/4 standing wave (or its 
harmonics at higher frequencies), a superposition of plasmonic waves traveling to and reflected 
from the stub ends. Thus, the repetition of the stubs results in an extra bandgap (~52 GHz) 
arising from the λp/4 standing wave resonance, in addition to the Brillouin-zone-boundary 
bandgap (Fig. 5b-c). By further exploiting the versatility of 2D medium shaping, W. F. Andress 
et al also created plasmonic crystals with two-directional periodicity by etching periodic lattices 
of holes into 2DEG (Fig. 6a). For 2D plasmons traveling horizontally, a bandgap occurs around 
the first Brillouin-zone-boundary, at which the separation between two adjacent vertical crystal 
planes equals λp/2. Indeed, two rectangular lattices and a hexagonal lattice made out of 2DEG in 
Fig. 6a produce expected bandgaps measurements (Fig. 6b). 

Another exciting avenue to explore is to create plasmonic interferometers. We recently 
demonstrated a two-path interferometer of Mach-Zehnder type where two 2D plasmonic waves 

 

Figure 5. (a) Another linear 2D plasmonic crystal with GaAs/AlGaAs 2DEG. (b,c) Measured s21 
magnitude and phase. Reprinted with permission from Nano Lett. 12, 2272 (2012). Copyright © 2012 
American Chemical Society. 
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undergoing different phase delays are made to interfere [8]. These on-chip 2D plasmonic 
interferometers exhibit a higher sensitivity to the effective path length difference as compared to 

interferometers employing electromagnetic waves, due to 2D plasmons’ ultra-subwavelength 
confinement. The 2D plasmonic interferometers may thus be useful for highly precise and 
sensitive signal detection, modulation and demodulation, and biomolecular and chemical sensing, 
in particular, at THz and infrared frequencies. 

 

Figure 6. (a) Rectangular and hexagonal 2D plasmonic crystals (GaAs/AlGaAs 2DEG). (b) Measured 
s21 magnitude (left) and s21 phase (right) of rectangular (top) and hexagonal (bottom) crystals.  
Reprinted with permission from Nano Lett. 12, 2272 (2012). Copyright © 2012 American Chemical 
Society. 
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Negative index metamaterials have been a topic of interest due to their unusual abilities 
that can lead to technologically gainful applications, and a broad array of negative index 
metamaterials have been synthesized by engineering electric, magnetic, or optical properties of 
materials [28-32]. Ultra-subwavelength 2D plasmons, in particular, their associated large 2D 
kinetic inductance, can be engineered by shaping the 2D conductor geometry to create a new 
type of metamaterials with extraordinarily strong negative refraction. Using kinetic inductance 
for negative refraction was envisioned with 3D metallic nanoparticles [33] and experimentally 
glimpsed with 3D metal surface plasmons [34], but 3D kinetic inductance is far smaller than 2D 
kinetic inductance, and the two works yielded negative indices less than -5. In contrast, we 
recently obtained a negative index as large as -700 by exploiting the large 2D kinetic inductance 
[9]. The large negative index, which corresponds to ultra-subwavelength confinement of 
negatively refracting wave, can bring the science of negative refraction into drastically 
miniaturized scale and enable sub-diffraction-limit imaging.  

 

 

Figure 7. (a) 2DEG strip array. (b) Schematic with the front face cut at the dashed line of part (a). (c) 
Half-circuit model for the metamaterial. (d) The half 2DEG strip in part (c), which is a 2D plasmonic 
medium, may be modeled as a lumped kinetic inductor, if the plasmonic wavelength is much longer 
than the half 2DEG strip. Reprinted with permission from Nature 488, 65 (2012). Copyright © 2012 
Nature Publishing Group. 
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Figure 7 shows a proof-of-concept negative index metamaterial operating at GHz 
frequencies and cryogenic temperature (up to 20 K) from the aforementioned work of ours [9]. It 
is an array of ungated GaAs/AlGaAs 2DEG strips (Figs. 7a-b). Metallic CPWs consisting of 
signal lines (S) flanked by ground lines (G) are used to guide signals to and from the device. 
Each 2DEG strip is tied to the G lines at its both ends via ohmic contacts. The left S line extends 
up to over a few strips on the left side. The excitation electromagnetic wave’s electric fields 
between the signal and ground lines of the left CPW excites 2D plasmonic waves in the leftmost 
few strips along the direction of the strips. The resulting modulation of charge distribution in 
these strips capacitively couple to the neighboring strip to the right, exciting 2D plasmonic 
waves along the direction of the strip. This energy transfer process is repeated, delivering an 
effective wave from left to right, perpendicularly to 2DEG strips. Note that two types of waves 
are involved [Fig. 7(c)]; the 2D plasmonic wave traveling along each strip, and the effective 
wave propagating orthogonally to the strips. It is this effective wave that is negatively refracting.  

Since no current passes across any strip center due to symmetry, only the lower half below 
the horizontal symmetry line, or half circuit, can be used in understanding the metamaterial. If 
we denote the voltage at the top end of the m-th half strip as Vm(t), the effective wave can be 
represented by {V1(t), V2(t), V3(t), … } [Fig. 7(c)]. Each half strip may be modeled as a 
plasmonic transmission line supporting 2D plasmonic wave [Fig. 7(c)]. But as the plasmonic 
transmission line is short-circuit terminated to ground at its end and the plasmonic wavelength is 
much longer than the strip length in this design, the plasmonic transmission acts like a lumped 
2D kinetic inductor, Lkl, where l is the effective length of the half strip. The entire half-circuit is 
then an array of capacitively coupled lumped kinetic inductors [Fig. 7(d)]. This may be likened 
to the left-handed electromagnetic transmission line, an array of capacitively coupled magnetic 
inductors, which is known to be negatively refracting [35,36]. However, with the significantly 
large 2D kinetic inductance, the 2DEG strip array yields a negative index as large as -700 [9], 
while the left-handed electromagnetic transmission line, which relies on 3~4 orders of magnitude 
smaller magnetic inductance, yields negative indices typically below -5.  

We reviewed the unique characteristics of 2D plasmonic waves (in particular, their ultra-
subwavelength confinement) and their underlying physics, and described how 2D plasmonic 
waves can be engineered by geometric shaping of 2D conductor to create 2D plasmonic circuits 
and metamaterials. The proof-of-concept devices presented were implemented with GaAs 2DEG, 
and operated at GHz frequencies, thus at cryogenic temperature. However, room temperature 
excitation of 2D plasmonic waves is possible at THz and infrared frequencies with both GaAs 
2DEG and graphene [7,25], thus the demonstrated device designs can be scaled to these higher 
frequencies for room temperature operation.   
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