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A wealth of effort in photonics has been dedicdtethe study and engineering of surface
plasmonic waves in the skin of three-dimensiondk metals, due largely to their trait of

subwavelength confinement. Plasmonic waves in tingedsional conductors, such as
semiconductor heterojunction and graphene, contrestsurface plasmonic waves on
bulk metals, as the former emerge at GHz-THz afrdned frequencies well below the

photonics regime and can exhibit far stronger swatemgth confinement. This review

elucidates the machinery behind the unique behsngbthe two-dimensional plasmonic

waves, and discusses how they can be engineerecrette ultra-subwavelength

plasmonic circuits and metamaterials for infrarad &Hz-THz integrated electronics.

1. Introduction

Surface plasmons propagating in the skin of a bitkee-dimensional (3D)—metal with a
finite penetration depth have nucleated a greakt afegesearch in photonics, because they can
travel up to ~10 times slower than the free-spaght I(speedc), and thus can exhibit
subwavelength confinement with proportionally restliavavelength [1-4]. In contrast to these
surface plasmons on bulk metals that emerge inogtecal frequencies, the plasmons in
GaAs/AlGaAs two-dimensional (2D) electron gas (2DEg®d graphene, where electrons are
perfectly confined into two dimensions, appeaméttared and THz-GHz frequencies, near or in
the electronics regime. Furthermore, the 2D plasham achieve much greater subwavelength
confinement [5-7] with their velocity being ablereach well below/100 [6,8].

By shaping the 2D conductor geometry with the sdashdfabrication technology and
manipulating 2D plasmonic waves via reflectionerfgrence, and coupling according to the
geometry, a variety of ultra-subwavelength 2D plasim circuits and metamaterials, such as
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bandgap crystals, interferometers, resonant cayitied negative refractive index structures, can
be created [6,8,9] for GHz-THz and infrared intéggdaelectronics with applications in imaging,
large molecule spectroscopy, and sub-millimeter evagtronomy. The ultra-subwavelength
confinement of these 2D plasmonic structures suggesiting possibilities for sub-diffraction-
limit imaging, near-field operation, and drastimmturization.

This review paper will first elucidate the uniquehlavioral characteristics of plasmonic
waves in 2D conducting media and their physicatinr{Section 2). Then we will delineate how
2D plasmonic waves can be engineered to build iomak circuits and metamaterials, using
some recent device advances as examples (Section 3)

2. Physical Characteristics of 2D Plasmonic Waves

Perturbation of the equilibrium electron densitgtdbution in a solid-state conductor—
whether 3D or 2D—results in Coulomb restoring éprevhich drives local electrons back and
forth collectively to propel a plasmonic wave. Tdefining energetic component of a plasmonic
wave is the kinetic energy of the collectively diating electrons, which largely accounts for the
plasmons’ behavioral difference from light waves particular, the reduced plasmonic velocity
and subwavelength confinement. The kinetic enesgyai more strongly pronounced in 2D
plasmonic waves than in 3D bulk metal surface ptasmwaves [6,9]. Consequently, the
behavior of 2D plasmons diverges even more sigmfly from light waves than that of 3D
surface plasmons does; for example, and notablypla®mons can achieve a significantly lower
velocity thus a much greater subwavelength confar@rthan 3D surface plasmons. This section
explicates the origin of the unique behaviors of @Bsmonic waves in comparison to 3D bulk
metal surface plasmonic waves.

(a) Transmission Line Model for 2D Plasmonic Medium

As will be discussed shortly, the kinetic energytied collectively oscillating electrons in a
2D plasmonic wave can be modeled ugigtic inductance of non-magnetic origin [6,9]. On
the other hand, the electric potential energy aasst with the Coulomb restoring force that
drives local electrons into the plasmonic oscitlattan be modeled using electrical capacitance.
Besides the Coulomb restoring force, electron dexgay pressure serves as another restoring
mechanism upon the disturbance of the equilibrilenteon density distribution, and this effect
can be modeled using quantum capacitance [5,10Fh#.quantum pressure, however, becomes
conspicuous only when the Coulomb restoring fosceubstantially weakened by, for example,
placing a gate very proximate to the 2D plasmoniedioim and reducing the Coulomb
interaction range; throughout this paper, we wghare the quantum effect. Then the 2D
plasmonic medium can be modeled as a transmisaien consisting of distributed kinetic
inductanceLy per unit length and distributed electrical capaweC per unit length (Fig. 1)
[6,9,13]. This plasmonic transmission line diffénem the standard electromagnetic transmission



line in that the latter employs magnetic inductaimstead of kinetic inductance. The plasmonic
velocity is thenv, = 1/LkC)¥?, which corresponds to the plasmonic dispersicaticed.
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Figure 1. Transmission line model of a 2D plasmonic medilfrthe medium is gated, the gate serves
as the ground. For an ungated medium, the groutitkipotential of the free space far enough away.
dx: infinitesimal segment length of the 2D plasmamiedium.

We first evaluatd in the 2D conductor case where electrons havéefigiifective mass,
m, such as in GaAs/AlGaAs 2DEG (widW and length) [9]. Let a time-dependent electric
potential V(t) be applied along the length to induce an eledieid V(t)/I. Here the length is
chosen so short that the electric field does nbib#xa spatial variation; this is not a limiting
assumption, as the goal is to derive the kinetilmatance per unit length. Inertial accelerations
occur, for which Newton’s equation of motion for electron is eV/I) = m*(dv/dt) (v: electron
velocity). This translates t@®/l) = iom*v in the frequency domain. From this and by noting
that the current due to the electrons’ motioh#s-n,pevW (nyp: conduction electron density per
unit area), the 2D conductor’s impedance is obthid# = iwx(m*/n,pe?)(I/W). This is inductive
impedance of non-magnetic origin, with the kinétiductance per unit length given by

L = (M*/ nape®) x (1AWV). (2.1)

By usingke? = 2rtnyp and Er = A%k2/(2m*) (ke: Fermi wavenumbelEg: Fermi energy), we can
rewrite Eq. (2.1) as:

Ly = (mh?le?) x (1E) x (1M). (2.2)

The kinetic energy of the accelerating electronsinsmately linked to the kinetic
inductance. With the velocity of an electron at a given time, the total kineth@rgyKioa Of the
electrons in the 2D conductor strip is expredégd = m*Vv4/2x n,pW. Since the total current is
= -nypeVW, we can write

Ko = 1/2 % (i 1) x 13, (2.3)



whereLyl is the total kinetic inductance of the 2D condudtip. Eq. (2.3) is analogous to the
energy of a magnetic inductor with currémfiven by 1/2 x (magnetic inductance)®
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Figure 2. Shift of the Fermi disk in thiespace in response to an electric field.

Alternatively, we can instead calculdig by first evaluating the total kinetic enerffysa
and current in thek-space K electron wavenumber) and then relating them thinadhe energy-
current relation, Eq. (2.3) [9]. With the electfield applied along the length of the 2D conductor
strip to which direction we assign a negatwaxis, the 2D Fermi disk with diametler whose
center originally lies at thé&-space origin (Fig. 2A) shifts towards the positivé-axis,
increasing the total kinetic energy and producinguaentl. Figure 2,B shows the Fermi disk
shift by Ak <<kg, after timeAt. The total kinetic energy increase is:

_ ok, ok, _ dk ok, _
K,y =W ij 27— L E(K)-W jAj 27~ LE(K), (2.4)

where the factor 2 in each integrand accountsgor degeneracy ang (k) = #%Z/(2m*) is the

energy of a single electron whose wavenumbds iseeping to the lowest order ok, it is a
straightforward exercise to show that Eq. (2.4)¢ct®

K g :V\QEF U (2.5)
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On the other hand, the current magnitudegiven by:

dk, dk .
| =W||2—=—Lev,(k), (2.6)
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wherevX(R) is thex-component of the velocity of an electron whose evagctor isk , that is,
VX(R) = (rk/m*) cosd, where the integration variabteis in reference to Fig. 2. Keeping to the

lowest order oAk, one can show that Eq. (2.6) reduces to

_ WeE,
Tih

| x Ak. 2.7)

Egs. (2.5) and (2.7) satisfy the energy-currerstiah of Eq. (2.3) withy given by:
Ly = (mh?le?) x (1) x (1MW), (2.8)
which is identical to thég-expression of Eqg. (2.2).

The second approach to calculéteis more general than the first approach, because t
second approach can be applied to any arbitragtesglectronE-k dispersion. In particular, in
the linearkE-k dispersion case of graphene—another example @b2Buctor—where individual
electrons behave as massless particles [14,15]/fitste approach cannot be used but the

calculation in the second approach can be repesredwith E(E) =hvrk, vX(IZ) = VeC0sf, and

with the appropriate degeneracy factor includinghbgpin and valley degeneraciag: (Fermi
velocity) [16,17]. The application of the secondoegach to the calculation of the graphene
kinetic inductance turns out to be identical to &98).

The per-unit-length capacitandg, in the 2D plasmonic transmission line [Fig. 1hieh
models the Coulomb restoring force in the plasmamiwe, depends on surroundings of the
plasmonic medium. For example, if a 2D conductop stith width W has no other conductors
nearby,C for a given plasmonic wavenumberis given by [18,19]

C =24W, (2.9)

where € is the electric permittivity of the surroundingBhis is obtained by calculating the
electric energy of the sinusoidal charge densgjrifiution at a plasmonic wavenumbley,

As the plasmonic velocity isp = wk, = 1/(C)"%, we can now obtain the detailed
expression for the 2D plasmonic dispersion. Inddee of the stand-alone 2D conductor wiiere
is given by Eq. (2.9), by usirg of Eq. (2.8), whether the 2D conductor is semicmtor 2DEG
or graphene, we obtain:

w= = k (2.10)

JLC Voem® ™

Calculation in the random phase approximation fraork yields a more general form of the 2D
plasmonic dispersion relation [5,20], but in themiti where quantum effects such as electron
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degeneracy pressure and interband transitions e€agnored, the general dispersion reduces to
Eq. (2.10) for both semiconductor 2DEG and graphgri].

If an external conductor is proximate to the 2Dduetor,C is altered. A case of particular
interest is a gated 2D conductor. If the separatphetween the gate and 2D conductor is much
smaller than the plasmonic wavelengthd(<< 1), C becomes the parallel plate capacitance per
unit length,C = &W/d. The 2D plasmonic dispersion then becomes lin@abdth semiconductor

2DEG and graphene [11,22]:
2
W= =k, |< EFZd . (2.11)
LC ETh

As compared to the stand-alone 2D conductor, thedgeonfiguration yields smaller plasmonic
wavelength and velocity [Eqgs. (2.10) vs. (2.11}isTis because the gate shortens the Coulomb
interaction range. For the same reasorg @sshortened, the plasmonic velocity and wavekengt
are further reduced. These 2D plasmonic disperdimnstand-alone or gated cases have been
experimentally demonstrated for both semicondu2REG [6,8] and more recently for graphene
[7,23,24].

(b) 2D Plasmons v. 3D Surface Plasmons

While we have focused on the transmission line rhémtethe 2D plasmonic medium, a
similar transmission line model consisting of kinehductance and electrical capacitance can be
used to model the surface plasmonic medium in kive &f the 3D bulk metal with the finite
penetration depth, for the two main energetic camepts of the surface plasmonic wave on the
3D metal are also the kinetic energy of collectvascillating electrons and the electric potential
energy corresponding to the Coulomb restoring fdd®. In contrast, light waves possess
magnetic and electric energies as two energetioaents. By comparison one can see that the
kinetic energy of plasmonic waves (whether 2D plaissnor 3D surface plasmons) is responsible
for their behavioral divergence from light waves.

To describe the behavioral difference between 2d3mbnic waves and 3D metal surface
plasmonic waves, we now evaluate the kinetic imnmlhum® associated with the 3D surface
plasmonic wave. The collective oscillation of efeos in 3D surface plasmonic waves occurs
within the skin of a bulk conductor, whose frequedependent penetration deplh,decreases
with increasing frequency. The per-unit-length kiménductance of this skin with widt¥W can
be derived by considering inertial acceleratiorlettrons therein, as in the first approach given
in the previous subsection (for 3D conductors,e¢hemo particular reason to consider massless
electrons):

Liskin = (M*/Ngpe?) x (1AVB), (2.12)



wherengp is conduction electron density per unit volumeingdk=>=3r’nsp and Er=r’ke/(2m),
we can rewrite Eq. (2.12) into

Liskin = (3%12€%) x (1Eg) x (L) x (1KeD). (2.13)

Egs. (2.13) and (2.8) show that kinetic inductaimceither 3D or 2D case increases as the total
number of electrons is reduced. This can be urmlmisas follows. When there are fewer
electrons, they need to accelerate to a propoitiohigher velocity to produce the same current.
The total kinetic energy then becomes larger, &sptoportional to the number of electrons but
to thesguare of the electron velocity. Since we have fixed therent, the kinetic inductance
then should be larger, according to Eq. (2.3).

When 2D kinetic inductande, of Eq. (2.8) and 3D kinetic inductantgsyin of Eq. (2.13)
are juxtaposed, the k) factor inLysin makes an apparent difference. Since the penetratio
depthd decreases with frequency in the 3D surface plagmynamics,Ly «kin iNnCreases with
frequency; this is essentially because the reddatreases the number of conduction electrons
participating in the surface plasmonic wave. Agtrencies below the optics reginteis large
enough to rendeky «in, unappreciable as compared to the magnetic indeetah the surface
plasmonic medium. Hence, it is difficult to obsemuaface plasmons below the optics regime
with 3D metals, and 3D surface plasmonic dispersiarve deviates away from the light
dispersion line only towards the optics regime (RYy By contrastLy of the 2D plasmonic
medium has no frequency dependency, as there isudo frequency-dependent penetration
depth where electrons are confined perfectly imto timensions. Moreovel, is orders of
magnitude larger than the magnetic inductance ef 20 conductor. Therefore, the 2D
plasmonic wave emerges far below the optics regiwith its dispersion curve deviating
significantly away from the light line at these Iér#quencies (Fig. 3).
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Figure 3. (a) lllustration of the charge, electric field &grarrows), and magnetic field (blue arrows)
associated with surface plasmonic wave on 3D budtairand with 2D plasmonic wave in an ungated
2D conductor. (b) Essence-capturing hypotheticabpelision curves for light wave, 3D surface
plasmonic wave, ungated 2D plasmonic wave, andigdeplasmonic wave.



Even whenLy«in becomes appreciable in the optics regime with ke@bughd and
surface plasmonic dynamics is more pronoung&glljs still much larger than 1, leavirg skin
<< Ly (in principle Ly skin can grow indefinitely as frequency grows toward surface plasmon
resonance frequency withapproaching 0, but in practice loss obscures suchations). The
Lk skin << Lk inequality is further enhanced by the fact thatappearing in bothy s, andLy is
typically much larger with the 3D bulk metal suchgold than with semiconductor 2DEG and
graphene. Overall. skin €ven in the optics regime is far smaller thanby 2 ~ 3 orders of
magnitude. As/, U [Kinetic inductancet’?, 2D plasmonic velocity is far smaller than 3D sog
plasmonic velocity typically limited to ~¢/10 [1] (Fig. 3), achieving far greater ultra-
subwavelength confinement. One can further slow2Beplasmonic wavdy placing a gate
proximate to the 2D conductor and thus by shorggtfie Coulomb interaction range within the
2D conductori(e., by increasingC; note thaw, = 1/(L«C)"?) [Eq. (2.10) v. Eq. (2.11); Fig. 3]; in
fact, with top-gated GaAs 2DEG, we were able taawb2D plasmonic velocities as low as ~
c/700 [6].

(c) Effect of Electron Scattering

Electron scatterings with phonons and lattice irt@s in the 2D plasmonic medium are
manifested as per-unit-length ohmic resistaRcevhich can be added to the transmission line
model of Fig. 1 in series with,. The quality factor of the 2D plasmonic mediunthien given

by
Q=aw/R=ar, (2.14)

where the electron scattering timéactors in througtR (note that we here are not considering
loss mechanism due to interband transitions, fgrractice many plasmonic applications can be
considered at frequencies where such transitionsotl@ccur). The plasmonic dynamics can be
observed as far aQ is not too far below 1j.e, if ris long enough to accommodate an
appreciable kinetic energy increase Qfis much larger than 1, many cycles of collective
electron oscillation are sustained between scagezvents, making the plasmonic wave very
easily observable). To observe 2D plasmonic wav&sHz frequenciest has to be increased,
which can be done by cryogenic operation, as agiplkcfor GaAs/AlGaAs 2DEG whereis
limited by phonon scattering down to substantiddiywered temperature, but not as well with
graphene where impurity scattering is significargreat room temperature. At THz and infrared
frequencies, room temperature plasmonic operatigrossible with both semiconductor 2DEG
and graphene, as experimentally demonstrated [7,25]

3. Applications — Ultra-Subwavelength 2D Plasmoni€ircuits and Metamaterials

A 2D plasmonic medium can be readily shaped intlesigner planar geometry by using
the standard fabrication technology. 2D plasmorages then can be manipulated by reflections,
interferences, and superposition according to gwgetry. In this way, one can create a variety



of GHz-THz and infrared 2D plasmonic circuits andtamaterials [6,8,9]. Due to their ultra-
subwavelength confinement, these 2D plasmonic imat structures are amenable to near-field
operation, sub-diffraction-limit imaging, and diashiniaturization.
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Figure 4. (@) 2D plasmonic crystal with GaAs/AlGaAs 2DEG) (@ross-sectional schematic. (c,d)
Measureds,; magnitude and phase. Reprinted with permissiom fidano Lett. 12, 2272 (2012).
Copyright © 2012 American Chemical Society.

An example of 2D plasmonic circuits is plasmoniadigap crystals, which can be created
by introducing structural periodicity into a 2D ahuttor. These plasmonic bandgap crystals are
analogous to photonic bandgap crystals [26,27],tbetformer operate far below the optical
frequencies and exhibit much greater subwavelemgihfinement. A proof-of-concept 2D
plasmonic crystal, which W. F. Andregtsal built from GaAs/AlGaAs 2DEG and operates in the
GHz frequencies at cryogenic temperature (4.2K)shiswn in Fig. 4 [6]. The 2DEG was
periodically shaped by spatially modulating its thid(Fig. 4a), and was placed between
electromagnetic metallic coplanar waveguides (CRW@hsisting of signal (S) & ground (G)
lines, where the S lines couple to the 2DEG viaigloontacts (Figs. 4a-b). The 2DEG is placed
under a metallic gate, which is merged with the GP®/lines; in this way, the top gate not only
enhances the subwavelength confinement of 2D plasmeaves, but serves as the proper
plasmonic ground. Due to the crystal periodicibyg magnitude of the transmission paramgter
obtained from microwave scattering measurementssteo bandgap (24~34 GHz) around the
first Brillouin-zone boundary (Fig. 4c), where theystal periodicity equals half the plasmonic



wavelength, indicating, ~ ¢/300. The phase of the measuied is a product of plasmonic
wavenumbeik, and the crystal length, thus.'s phase over the frequency (Fig. 4d) yields the
dispersion, which also shows the bandgap behatsopassband slope, which is linear due to the
gating [Eq. (2.11)], consistently indicatgs- ¢/300.
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Figure 5. (a) Another linear 2D plasmonic crystal with Gafl§aAs 2DEG. (b,c) Measuresh;

magnitude and phase. Reprinted with permission fkano Lett. 12, 2272 (2012). Copyright © 2012
American Chemical Society.

The shaping principle can be applied with a wealttversatility. For instance, one can
subtly vary the crystal shape to introduce an apabée behavioral difference. Fig. 5a shows an
example variation [6], where the transitions betwearrow and wide 2DEG sections are abrupt.
Plasmonic dynamics here is not a merely disturbadzédntal routing as in Fig. 4. Vertical
routing of plasmons to and from the ends of thektsiections (stubs) must be considered; in fact,
these stubs serve as plasmonic cavities that resdryaforming aly/4 standing wave (or its
harmonics at higher frequencies), a superpositigolasmonic waves traveling to and reflected
from the stub ends. Thus, the repetition of thdstresults in an extra bandgap (~52 GHz)
arising from thely/4 standing wave resonance, in addition to theldiih-zone-boundary
bandgap (Fig. 5b-c). By further exploiting the \aiigy of 2D medium shaping, W. F. Andress
et al also created plasmonic crystals with two-direaigmeriodicity by etching periodic lattices
of holes into 2DEG (Fig. 6a). For 2D plasmons thagehorizontally, a bandgap occurs around
the first Brillouin-zone-boundary, at which the aggtion between two adjacent vertical crystal
planes equals,/2. Indeed, two rectangular lattices and a hexddattece made out of 2DEG in
Fig. 6a produce expected bandgaps measurement$yig

Another exciting avenue to explore is to createsiplanic interferometers. We recently
demonstrated a two-path interferometer of Mach-dehrtype where two 2D plasmonic waves
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undergoing different phase delays are made to fameer[8]. These on-chip 2D plasmonic
interferometers exhibit a higher sensitivity to #féective path length difference as compared to
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Figure 6. (a) Rectangular and hexagonal 2D plasmonic ciy$@dAs/AlGaAs 2DEG). (b) Measured
s;; magnitude (left) and s21 phase (right) of rectéamgtop) and hexagonal (bottom) crystals.
Reprinted with permission froNano Lett. 12, 2272 (2012). Copyright © 2012 American Chemical

Society.

interferometers employing electromagnetic waves thu 2D plasmons’ ultra-subwavelength
confinement. The 2D plasmonic interferometers maystbe useful for highly precise and
sensitive signal detection, modulation and demdauiaand biomolecular and chemical sensing,
in particular, at THz and infrared frequencies.
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Negative index metamaterials have been a topiatefest due to their unusual abilities
that can lead to technologically gainful applicaip and a broad array of negative index
metamaterials have been synthesized by engineel@atyic, magnetic, or optical properties of
materials [28-32]. Ultra-subwavelength 2D plasmansparticular, their associated large 2D
kinetic inductance, can be engineered by shapiag2id conductor geometry to create a new
type of metamaterials with extraordinarily stronggative refraction. Using kinetic inductance
for negative refraction was envisioned with 3D riietananoparticles [33] and experimentally
glimpsed with 3D metal surface plasmons [34], dDtKinetic inductance is far smaller than 2D
kinetic inductance, and the two works yielded negatndices less than -5. In contrast, we
recently obtained a negative index as large as by0&xploiting the large 2D kinetic inductance
[9]. The large negative index, which corresponds uttya-subwavelength confinement of
negatively refracting wave, can bring the sciendenegative refraction into drastically
miniaturized scale and enable sub-diffraction-limmaging.
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Figure 7. (a) 2DEG strip array. (b) Schematic with the frate cut at the dashed line of part (a). (c)
Half-circuit model for the metamaterial. (d) Thdff2DEG strip in part (c), which is a 2D plasmonic
medium, may be modeled as a lumped kinetic induidttite plasmonic wavelength is much longer
than the half 2DEG strip. Reprinted with permisdiam Nature 488 65 (2012). Copyright © 2012
Nature Publishing Gro..
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Figure 7 shows a proof-of-concept negative indextamaterial operating at GHz
frequencies and cryogenic temperature (up to 2f6d@) the aforementioned work of ours [9]. It
is an array of ungated GaAs/AlGaAs 2DEG strips gFiga-b). Metallic CPWSs consisting of
signal lines (S) flanked by ground lines (G) areduso guide signals to and from the device.
Each 2DEG strip is tied to the G lines at its batlls via ohmic contacts. The left S line extends
up to over a few strips on the left side. The etmnh electromagnetic wave’s electric fields
between the signal and ground lines of the left G&\ites 2D plasmonic waves in the leftmost
few stripsalong the direction of the strips. The resulting modolatof charge distribution in
these strips capacitively couple to the neighbostgp to the right, exciting 2D plasmonic
waves along the direction of the strip. This enetrgysfer process is repeated, delivering an
effective wave from left to right,perpendicularly to 2DEG strips. Note that two types of waves
are involved [Fig. 7(c)]; the 2D plasmonic waveveting along each strip, and the effective
wave propagating orthogonally to the strips. this effective wave that is negatively refracting.

Since no current passes across any strip centeilodsygnmetry, only the lower half below
the horizontal symmetry line, or half circuit, cha used in understanding the metamaterial. If
we denote the voltage at the top end of thth half strip asviy(t), the effective wave can be
represented by\{i(t), Va(t), Vs(t), ... } [Fig. 7(c)]. Each half strip may be modeled as a
plasmonic transmission line supporting 2D plasmaméve [Fig. 7(c)]. But as the plasmonic
transmission line is short-circuit terminated townrd at its end and the plasmonic wavelength is
much longer than the strip length in this desitne, plasmonic transmission acts like a lumped
2D kinetic inductorLl, wherel is the effective length of the half strip. Theienthalf-circuit is
then an array of capacitively coupled lumped kmetductors [Fig. 7(d)]. This may be likened
to the left-handed electromagnetic transmissioe, lan array of capacitively coupled magnetic
inductors, which is known to be negatively refragt{35,36]. However, with the significantly
large 2D kinetic inductance, the 2DEG strip arréglds a negative index as large as -700 [9],
while the left-handed electromagnetic transmissiime, which relies on 3~4 orders of magnitude
smaller magnetic inductance, yields negative irgltgpically below -5.

We reviewed the unique characteristics of 2D plasmawaves (in particular, their ultra-
subwavelength confinement) and their underlyingsptsy and described how 2D plasmonic
waves can be engineered by geometric shaping afa?iductor to create 2D plasmonic circuits
and metamaterials. The proof-of-concept devicesgmted were implemented with GaAs 2DEG,
and operated at GHz frequencies, thus at cryogemperature. However, room temperature
excitation of 2D plasmonic waves is possible at &z infrared frequencies with both GaAs
2DEG and graphene [7,25], thus the demonstrateit@leesigns can be scaled to these higher
frequencies for room temperature operation.
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