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Abstract— Roboticists, biologists, and chemists are now pro-
ducing large populations of simple robots, but controlling
large populations of robots with limited capabilities is difficult,
due to communication and onboard-computation constraints.
Direct human control of large populations seems even more
challenging.

In this paper we investigate control of mobile robots that
move in a 2D workspace using three different system models.
We focus on a model that uses broadcast control inputs specified
in the global reference frame.

In an obstacle-free workspace this system model is uncontrol-
lable because it has only two controllable degrees of freedom—
all robots receive the same inputs and move uniformly. We
prove that adding a single obstacle can make the system
controllable, for any number of robots. We provide a position
control algorithm, and demonstrate through extensive testing
with human subjects that many manipulation tasks can be
reliably completed, even by novice users, under this system
model, with performance benefits compared to the alternate
models.

We compare the sensing, computation, communication, time,
and bandwidth costs for all three system models. Results are
validated with extensive simulations and hardware experiments
using over 100 robots.

I. INTRODUCTION

It is now possible to make and field very large (103–1014)
populations of simple robots. Potential applications for these
robots include targeted therapy, sensing, and actuation. With
large populations come two fundamental challenges: (1) how
to perform state estimation for these robots, and (2) how to
control the robots.

Traditional approaches often assume independent control
signals for each robot [1], but each additional independent
signal requires engineering and communications bandwidth.
This becomes more challenging as the robot size decreases.
At the molecular scale [2], there is a bounded number of
individual-specific modifications that can be made.

More recently, robots have been constructed with phys-
ical heterogeneity so that they respond differently to a
global, broadcast control signal. Examples include scratch-
drive microrobots, actuated and controlled by a DC voltage
signal from a substrate [3], [4]; magnetic structures with
different cross-sections that could be independently steered
[5]; MagMite microrobots with different resonant frequencies
and a global magnetic field [6]; and magnetically controlled
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Fig. 1. Examples of manipulating many simple robots using uniform
global inputs. Shown are 1) 1D compression, 2) 2D compression, 3) position
control, 4) obstacle avoidance, 5) pushing an object, 6) dispersion, 7)
splitting, and 8) guiding an object along a trajectory. Many of these can
be realized with an economy of sensing and communication bandwidth.
See the video attachment for simulation and hardware demonstrations,
http://www.youtube.com/watch?v=px5RdSvGD2Q.

nanoscale helical screws constructed to stop movement at
different cutoff frequencies of a global magnetic field [7].
In our previous work with robots that can be modeled as
nonholonomic unicycles, we showed that an inhomogeneity
in turning speed is enough to make even an infinite number
of robots controllable with regard to position. All these ap-
proaches show promise, but they also require both excellent
state estimation and perfect heterogeneity (no duplication). In
addition, the controllers required at best a summation over all
the robot states [8] and at worst a matrix inversion [9]. These
approaches become impractical for large robot populations.

In this paper we take a very different approach, illustrated
in Fig. 1. We assume a population of approximately identical
planar robots and one global control signal consisting of a
vector all robots should move along. This system is not con-
trollable because the robots move uniformly, and applying a
control signal transposes the entire group identically along
the vector. However, we show that a single square obstacle
is sufficient to control the final position of every robot
under mild workspace constraints. Moreover, we catalog
primitive operations, such as techniques for gathering or
dispersing robots in 2D. These manipulation primitives can
be accomplished with a constant number of commands that,
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unlike techniques relying on inhomogeneity, do not increase
with population size.

Our paper is organized as follows. After a discussion of
related work in Section II, we describe our problem and
algorithmic results in Section III. We discuss the results of
simulations and hardware experiments in Section IV, and end
with concluding remarks in Section V.

II. RELATED WORK

Our previous work [8], [9] focused on exploiting inho-
mogeneity between robots. These control algorithms the-
oretically apply to any number of robots—even robotic
continuums—but in practice process noise cancels the dif-
ferentiating effects of inhomogeneity for more than tens of
robots. This paper seeks to establish control algorithms that
extend to many thousands of agents. These techniques derive
inspiration from the field of nonprehensile manipulation [10].

A. Three challenges for massive manipulation

While it is now possible to create many micro- and
nanorobots, there remain challenges in control, sensing, and
computation.

1) Control—global inputs: The systems [2]–[7], [11]–
[13] all rely on global inputs, where each robot receives an
exact copy of the control signal. Two reasonable questions
are “What tasks are possible with many robots, all under
uniform control inputs?” and “What tasks are impossible
with many robots, all under uniform control inputs?”

2) Sensing—large populations: Parallel control of n
differential-drive robots in a plane requires 3n state variables.
Even holonomic robots require 2n state variables. Numer-
ous methods exist for measuring this state in micro- and
nanorobotics. These solutions use computer vision systems
to sense position and heading angle, with corresponding
challenges of handling missed detections and registration
of detections with corresponding robots. These challenges
are increased at the nanoscale where sensing competes with
control for communication bandwidth. In this paper we
outline control techniques that require only the first and
second moments of a population’s position, or the bounding
box containing all robots of interest.

3) Computation—calculating the control law: In our pre-
vious work the controllers required at best a summation over
all the robot states [8] and at worst a matrix inversion [9].
These operations become intractable for large populations of
robots. This paper, by focusing on direct human control of
large robot populations, accentuates computational difficul-
ties because the controllers are implemented by the unaided
human operator. We present an approach that, for many
tasks, bypasses these large-population problems by allowing
the user to command the entire population as a single unit.
For position control–bringing each robot to a desired final
position–we cannot bypass this problem, but we provide an
algorithm that scales linearly in the number of robots.

B. Nonprehensile manipulation

In nonprehensile manipulation, a robot affects its envi-
ronment without grasping [10], [14], [15]. In some ways,
our problem formulation is the inverse of nonprehensile
manipulation. Rather than just use a robot to restructure
the environment, we use the environment to restructure a
population of robots.

We can also use a large population of robots for traditional
nonprehensile tasks, such as transporting objects using the
flow of the robots [16], and manipulating an object too heavy
for a single robot. Our control formulation enables efficient
control of this kind of transport.

III. SYSTEM MODEL

A. Architectures

We compare three n-robot system architectures with the
following motion models:ẋiẏi
θ̇i

 = δai

v cos(θi)v sin(θi)
ω


︸ ︷︷ ︸

ADDRESSABLE

,

v cos(θi)v sin(θi)
εiω


︸ ︷︷ ︸
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,

 v cos(θi)
v sin(θi)

k sin(ψ − θi)


︸ ︷︷ ︸

GLOBAL

(1)

The state of the ith robot is [xi, yi, θi] ∈ R3 and the state
of the system is ∈ R3n. This paper primarily focuses on the
GLOBAL control architecture.

1) Addressable control with independent inputs (AD-
DRESSABLE): This architecture has the finest level of con-
trol, but requires each robot to be addressable. There are
three scalar inputs, the forward speed v ∈ R, the angular
turning rate ω ∈ R, and the address a ∈ {1, . . . , n,all}.
The ith robot only moves if the address is i or all. This
system is fully controllable because each robot can be steered
independently to a goal position and heading angle.

2) Control with uniform inputs in the robot’s local coor-
dinate frame (LOCAL): The system has two scalar control
inputs, the forward speed v ∈ R and the angular turning
rate ω ∈ R. We proved in [8] that the position (but not the
heading angle) of all the robots is controllable if each robot
has a unique parameter εi that scales the turning rate.

3) Control with uniform inputs in the global coordinate
frame (GLOBAL): The system has two scalar control inputs,
the forward speed v ∈ R and the desired heading ψ ∈ [0, 2π).
The parameter k scales the turning command. In an obstacle-
free workspace, this system is not controllable. The robots
translate and turn at the same rate and so their final positions
are the result of the same homogenous transformation being
applied to the starting pose of each robot. However, as shown
in Section III-D, adding a single obstacle is sufficient to
break symmetry and control the final position of each robot.

B. BLOCKWORLD Abstraction

We illustrate our points with a simplified BLOCKWORLD
abstraction. The workspace is a rectangular m1×m2 grid in
which each square is marked either free, fixed, or robot. All
robots are controlled by a shared input command from the
set {↑,→,←, ↓, ∅}, and can move horizontally and vertically



in the grid, as long as there are no fixed squares stopping the
robot. The boundary of the grid is composed of fixed squares.

The general case of motion-planning in a world composed
of even a single robot and both fixed and moveable squares
is in the complexity class PSPACE-complete [17]. Adding
an additional robot does not decrease this complexity: given
any single-robot problem, we can place a second robot in
the boundary of the world and surround it with fixed squares
without changing the original problem’s complexity. Still,
there are many tractable subproblems. We will use this
abstraction to present two representative algorithms, the first
for removing all the robots from a specified region and the
second for position control of every robot. Both algorithms
require only a single fixed obstacle and we can explicitly
state the space and number of commands required.

C. Clearing a rectangular region

In this section we provide an algorithm to remove all
the robots from within an axis-aligned rectangular region
A using a single, rectangular obstacle composed of fixed
squares. The procedure consists of moving robots initially in
A to the obstacle, sweeping the robots in a back-and-forth
pattern past the obstacle, and returning this newly cleared
area to A.

Given: an area to clear with bottom left corner at [Ax, Ay]
of width Aw and height Ah, and an obstacle with bottom left
corner at [Ox, Oy] of width Ow and height Oh.

Algorithm 1 CLEARREGION(A,O)
1: move ← Ox −Ax . move obstacle to bottom left
2: move ↓ Oy −Ay

3: c = 0
4: while c ·Ow < Aw do
5: move ↓ Ah . clear column down
6: move ← Ow

7: c = c+ 1
8: if c ·Ow < Aw then
9: move ↑ Ah . clear column up

10: move ← Ow

11: c = c+ 1
12: end if
13: end while
14: move → Ax −Ox − c ·Ow . return cleared area to A
15: move ↑ Ay −Oy

Algorithm 1 requires space proportional to the area of A
and O:

(|Ax −Ox|+Aw)× (|(Ay +Ah)− (Oy +Oh)|+Ah) .

The total distance moved is linear in the area of A:

dAw

Ow
e(Ah −Ox) +Ax + 2|Ox −Ax|+2|Oy −Ay|.

D. Position control

This section presents an algorithm to control the position
of n robots using a single obstacle. We employ the BLOCK-
WORLD abstraction, where the robots and the obstacle are

unit squares. Each call to Algorithm 2 moves one robot from
its starting position to its goal position.

a) Notation: The starting position of the kth robot in
world coordinates is kW (0), its desired final position is kWgoal,
and its position at time t is kW (t). We define fixed-size, axis-
aligned bounding boxes S and F such that kW (0) ∈ SW (0)
and kWgoal ∈ FW (0) ∀k ∈ [1, n]. The bottom left corners
of S and F are [SW

x (t), SW
y (t)] and [FW

x (t), FW
y (t)], and

are of width Sw, Fw and height Sh, Fh. Because all robots
are identical, without loss of generality the robot indices are
arranged in raster-scan order left-to-right, top-to-bottom in
S and top-to-bottom, left-to-right in F . We note that the
position of the kth robot may be specified in local reference
frame: kW (t) = FW (t) + kF (t). The unmoving obstacle is
located at [OW

x , OW
y ]. We assume the obstacle position Ox,y ,

the starting positions Sx,y , and the final positions Fx,y are
disjoint. Without loss of generality, we will assume that S is
to the lower right of the obstacle and F is to the upper left
of the obstacle, as illustrated in Fig. 2.

b) Procedure: At the beginning of the kth call, the
time is t, the bounding boxes S and F have been returned
to their initial positions on opposite corners of O, the first
k − 1 robots have been moved to their proper positions in
F , the remaining robots are in their original columns in S,
and O is between S and F . The kth robot starts in position
[kWx (t), kWy (t)] and should be moved to [kWgoal,x, k

W
goal,y].

The algorithm consists in “popping” the kth robot out of
the S(t) bounding box (steps 1–3), pushing the kth robot to
the correct x coordinate relative to Fx(t) (steps 4–7), pushing
the kth robot to the correct y coordinate relative to Fy(t)
(steps 8–10), and returning the S and F bounding boxes to
their original positions on either side of O (steps 11–12).

The commanded distance to move the kth robot from
kW (0) to the final destination kWgoal is bounded by:

Commanded distance(k) ≤ 2(2Sh + Sw + Fh + Fw + 2)

The total distance commanded for position control of n
robots is the sum:

Commanded distance =

n∑
k=1

Commanded distance(k)

≤ 2n(2Sh + Sw + Fh + Fw + 2).

c) Analysis: Algorithm 2 always requires 12n control
switches. The worst-case running time for Algorithm 2 oc-
curs when S and F are sparse and/or have large aspect ratios,
and the algorithm runs in O(n ·max{Sw, Sh, Fw, Fh}) time.
For more reasonable arrays, when S and F are dense with
aspect ratios near 1, the running time approaches O(n

√
n).

Algorithm 2 requires at least Sw+Fw+1 free space to the
left, Sw +Fw to the right, Sh +Fh +1 above, and Sh +Fh

below the obstacle:

(2Sh + 2Fh + 1)× (2Sw + 2Fw + 1) .
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Fig. 2. A single rectangular obstacle is sufficient to enable position control of n robots. We provide an O(n2) algorithm to accomplish this. Shown
above are frames from moving the kth robot into position. The robots are initially within the box at S(t), which is of width Sw and height Sh. We want
to move these robots to their final positions within a box at F (t), which is of width Fw and height Fh and disjoint from S(t). Given a simple square
obstacle O, the algorithm requires at least Sw +Fw +1 space on the left, Sw +Fw on the right, Sh +Fh +1 above, and Sh +Fh below the obstacle.

Algorithm 2 POSITIONCONTROL(S, F,O, k)
1: move ↑ until SW

y (t) > OW
y

2: move ← until kWx (t) = OW
x

3: move ↓ until kWy (t) > SW
y (t) + Sh

4: move ↑ until SW
y (t) > OW

y

5: move ← until SW
x (t) < OW

y − Sw

6: move ↓ until kWy (t) = OW
y

7: move → until kWx (t) = Fgoal,x + kFgoal,x
8: move ↑ 1
9: move → 1

10: move ↓ until kWy (t) = FW
goal,y + kFgoal,y

11: move ↑ until FW
y (t) > OW

y

12: move ← until FW
x (t) < OW

x − Fw

d) Simulation: Simulation results are shown in Fig. 3
for five arrangements with an increasing number of robots.
We compare the total distance moved and commanded with
the LAP distance—the shortest distance according to the Lin-
ear Assignment Problem using Manhattan distance. Because
all robots are interchangeable, the LAP distance reduces to

LAP =

n∑
k=1

∣∣kWx (0)− kWgoal,x

∣∣+ ∣∣kWy (0)− kWgoal,y

∣∣ .
IV. EXPERIMENTAL VALIDATION

To demonstrate the feasibility of human control of many
simple robots, we performed experiments on three platforms,
the r-one (n=8), the kilobot (n=101), and a simulated envi-
ronment (n=2000). We used the r-one robot [18] to contrast
three different control architectures, and the Kilobot robot
platform [19] to demonstrate manipulation tasks with large
populations of robots. Finally, in simulations we applied the
same control techniques to control thousands of robots.

A. User Study: Multi-Robot Manipulation Experiment
1) Objective: compare the three system architectures of

Eqn. (1) (Section III-A) with hardware experiments using n
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Fig. 3. The required number of moves using Algorithm 2 employing
a single square obstacle to rearrange n square-shaped robots. The log-
log plot compares Total distance—the sum of the moves made by every
robot, with Commanded distance—the distance broadcast to all robots,
and with LAP distance—the shortest distance according to the Linear
Assignment Problem using Manhattan distance. In each metric moving
{↑,→,←, ↓} one unit counts as one move. These were calculated for
the five patterns shown above. Dark blue is the target position, red is
the obstacle, and light blue is the initial configuration. The outline shows
the minimum required free space for the algorithm. See hardware imple-
mentation and simulation at http://youtu.be/5p XIad5-Cw. Code available at
http://www.mathworks.com/matlabcentral/fileexchange/42889.

robots to manipulate objects to goal positions and orienta-
tions.

2) Hypothesis: the GLOBAL technique will result in lower
completion times than ADDRESSABLE and LOCAL. More-
over, as the number of robots grows, the completion times
for each technique scale differently as the number of robots
is increased.

3) Equipment: This experiment used 1 to 8 r-one
robots [18]. The r-one is a low-cost, open-hardware,
differential-drive robot with a 10 cm diameter circular profile
shown in Fig. 4.

For each technique, the inputs are velocity and turning
rate (by tilting the controller forward/backwards to control
velocity and tilting it side to side to control turning rate.)
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(a) r-one robot (b) Manipulation experiment with Velcro-skirt grippers
Fig. 4. (a) (foreground) The r-one differential-drive mobile robot used for manipulation experiments (background) many r-one robots. (b) Manipulation
experiments. Each robot is wearing a circular skirt covered in Velcro fasteners. The object has the alternate type of fastener, so the robots remain attached
to the object after they collide with it. These experiments demonstrate the feasibility of multi-robot manipulation with simple robots and uniform inputs.

The inputs are low-pass filtered to provide a slow control.
There are two differences from Eqn. (1) due to hardware

constraints: 1.) Under LOCAL control, each robot receives
the same inputs. Over time, due to robot and environment
differences, the robots will not be aligned. This significant
process noise obviates the need to provide unique εi values
to each robot. 2.) The r-one robots do not have global
heading information. To emulate a global input, we send the
same velocity and turning commands to all the robots, and
augment this control with a distributed algorithm where each
robot turns to align itself with the average of its neighbor’s
orientation [20]. This algorithm is simple to implement, and
allows us to easily change the number of robots used from
experiment to experiment.

4) Task: Using each controller technique, a human user
will steer the robots from a starting position in the bottom left
side of the environment, to move an object to the goal region
(a position and an orientation). The experimenter records the
position/orientation of the object using a tracking system and
the time required for each task.

5) Results: The completion times are shown in Fig. 5,
and representative paths from one user in Fig. 6. Each shape
was tested with at least 5 subjects. GLOBAL had the shortest
mean completion times, while LOCAL had the longest mean
completion times for experiments with 5 and 8 robots.

Observing test subjects strive to control the robots led
to interesting conclusions. With ADDRESSABLE, the sub-
jects would align all the robots in a vector straight to the
goal, then enable them all to drive the robot to the target
position, then turn them to align tangent to the shape to
correct the orientation. The time to switch between robots
was the largest limitation to this approach and became
increasingly costly as the number of robots increased. With
the GLOBAL control, the subjects could very quickly bring
the object to the desired position—much faster than with
ADDRESSABLE—but controlling the orientation was difficult
because our arena was a rectangular shape with no convex
obstacles to pivot the object. Instead our test subjects relied
on dragging the object. The sum of the forces often created
a moment about the object, allowing the object to slowly
spin. The LOCAL control took the greatest amount of time
with more robots, requiring almost 40 minutes to push a 1
m object a 2 m distance in two trials of the 8-robot case.
The users were eventually successful, by iterating between
rotating the robots in place with alternating forwards and
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Fig. 5. We measured the completion time for human users using the three
control techniques in Eqn. (1). Users controlled n = 1 robots to manipulate
the box shape, 3 for the triangle, 5 for Texas, and 8 for the amoeba shape.
GLOBAL had the shortest mean completion times overall and LOCAL the
longest for experiments with 5 and 8 robots. Also shown are the means
and the final times for each trial (the same subject tested all three control
techniques, and each shape was tested with at least 5 subjects).

backwards velocity inputs. Occasionally the forward and
backward inputs opportunistically result in the object moving
in the general direction of the goal, and our test subjects
would continue this input until the object stopped progress.

B. Hardware Demonstrations: Large Robot Populations

The Kilobot [19] is a low-cost robot that allows one
to easily test collective algorithms with large numbers of
robots. It is available as an open source platform and is also
commercially available. Each robot is approximately 3 cm
in diameter and 3 cm tall, and uses two vibration motors to
move on a flat surface at speeds up to 1 cm/s. Each robot
has a single ambient light sensor which is used to implement
phototaxis (i.e., moving towards a light source).

Phototaxis is implemented by turning on one of the two
vibration motors, which causes the robot to slowly move
forward while turning. Since the ambient light sensor is
located on the back of the robot, this rotation will cause
the sensed light value to decrease until the robot is pointed
in the direction of the light source, at which point any further
rotation will cause the sensed light value to increase. Once
the light value begins to increase, the robot switches which
motor is active, causing the robot to rotate in the opposite
direction. The process of rotating until the sensed light value
increases and then switching directions is run continually,
which causes the robot to move towards the light source.

http://www.youtube.com/watch?v=qIW6hPgqCRE
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Fig. 6. Representative paths of the triangle object, which is manipulated by
n = 3 robots to a goal position and orientation at (0.9, 0.6) m. The same
human subject repeated the task with three controllers: ADDRESSABLE in
red, LOCAL in green, and GLOBAL in blue. Outlines of the object every
10s reveal that the LOCAL controller had the longest and least smooth path.
GLOBAL control makes steady progress to the goal, while ADDRESSABLE
stops forward movement periodically to rotate each robot towards the goal.

The following tests in Figs. 7 and 9 were conducted
with n=101 kilobots, a 1.2×1.2 m whiteboard as our
workspace, using either a set of five lights arranged at the
{W,SW,S, SW,E} vertices of a 4 m square centered on
the workspace, or (for the Assembly task) moving a light
along the circumference of a 3 m radius circle centered on
the workspace.

1) 1D and 2D compression: Compression tasks use the
environmental obstacles to reduce the position variance. By
driving the robots into a vertical boundary, we can reduce
the horizontal variance. Driving into a horizontal boundary
reduces the vertical variance. Iterating between the two
reduces both variances.

2) Dispersion: Dispersion separates the robots to raise the
position variance. This requires a more complex workspace.
We use a Galton array, an arrangement of circular obstacles
in interleaved rows with spacing between obstacles sufficient
so that only one robot can pass through at a time. Robots
enter from the top, and bounce stochastically left or right as
they collide with obstacles. The probability distribution for
the resulting spread of robots can be computed analytically—
Pascal’s triangle provides the number of paths to each
subsequent row. Experimental results are shown in Fig. 8.

3) Object manipulation with obstacles: In this test a
single object was pushed to a goal region at the end of an
S-shaped maze. The object was weighted to require multiple
robots pushing to break static friction. Control consisted of
alternating between a) actively pushing the object and b)
regrouping sufficient robots behind the object to return to
active pushing.

4) Object manipulation with orientation control: To rotate
an object, the robots must exert a force with a line of action
offset from the object’s center of mass. In this test a single
object was steered to a desired position and orientation.

5) Assembly: The robots were initialized uniformly-
randomly in the workspace. Two components of a compound
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Fig. 7. Five tasks with 101 Kilobots: 2D compression, dispersion, ma-
nipulating an object through a maze, manipulation with orientation control,
and assembly. In each task the light source’s position was the only input
to the robot population. This input is robust to individual robot failures—
during each test several robots failed due to glitches, poor calibration, or
low batteries—but each demonstration was ultimately successful.

object, each requiring several robots to manipulate, both re-
quired reorientation before they could be assembled. Control
consisted of preparing both parts for mating, pushing the
objects together, and finally delivering the assembly to the
goal location.

6) Maze navigation: In this experiment we steered vary-
ing numbers of robots through an S-shaped maze and
recorded the number of robots at the goal position as a func-
tion of time. Fig. 9 summarizes the results. This experiment
indicates that there is an additional cost in time to steer
additional robots through a maze, but the growth appears
to be much less than linear. In single trials, n = 10 required
2.6× as much time as n = 1, and n = 100 required only
3.7× as much time as n = 1.
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Fig. 8. Comparison of variance as a function of time for 101 Kilobot
robots with and without circular obstacles in interleaved rows (a Galton
array). With the obstacles the maximum y-axis variance of the group is
twice the maximum y-axis variance without obstacles.
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Fig. 9. Navigating a simple maze with n = {1, 10, 100} Kilobot robots.
The input selects one of five lights arranged at the {W,SW,S, SW,E}
vertices of a 4 m square centered on 1.2×1.2 m workspace. Robots started
in the NW corner and the trial was ended when 90% of the robots reached
the goal region in the SE corner. n = 1 required 9m31s, n = 10 24m52s,
and n = 100 35m05s. Top: fraction at goal as a function of time, bottom:
frames from the 100-robot test at different times. For n=100, 88 robots
reached the goal within 22 minutes, but the remaining robots were stuck
behind an obstacle. To achieve 90%, the group had to first be retracted.

C. Feasibility Demonstrations in Simulation

In this section we use simulations to demonstrate that,
unlike the ADDRESSIBLE or LOCAL control techniques,
GLOBAL control scales in a fashion manageable by a human
user. We implemented GLOBAL control of large numbers
of robots using the 2D physics engine Box2d (http://
box2d.org) to simulate phototaxis behavior on each robot.
Fig. 10 shows frames from a test using 2,000 robots initially
uniformly randomly distributed in the workspace. In a short
sequence of commands, the human subject demonstrated a
2D compression task using a workspace corner to cluster
all the robots into a rectangular clump. The subject then
treated this clump as a single component and steered the
robots collectively above an array of interleaved obstacles.
The subject used these workspace obstacles to disperse the
robots through the workspace.

In Fig. 11, a human user steers 200 disk-shaped robots to
assemble a structure composed of 5 blocks. Robots conform
to the manipulated object, aiding fine control (see video).

Fig. 10. Human-controlled simulation using 2,000 disk-shaped robots
(blue) under the GLOBAL control law. Yellow bars represent lights that
attract the robots {north, south, east, west}. The top row demonstrates a
compression task using a workspace corner to cluster all the robots into a
rectangular clump. The user can then treat this clump as a single component.
In the bottom row, the user disperses the robots with an array of interleaved
obstacles.

Fig. 11. Human-controlled simulation using 200 disk-shaped robots (blue)
under the GLOBAL control law to assemble a specified structure from four
movable blocks (red) and one fixed block (red). The robots conform to the
object shape. If the robot density was insufficient to apply the desired force
on an object, the user re-grouped the robots using one or more of the walls.

V. CONCLUSION

In this paper we investigated control of mobile robots
that move in a 2D workspace using three different system
models. Table I compares theoretical performance of these
models for several tasks in O(·) notation. A key feature
is that compression, unison movement, and dispersion can
be accomplished under GLOBAL control by commanding a
vector direction into the appropriate obstacle, and require
sensing only the bounding box (4 scalars), while the demands
of other models almost uniformly scale with the number of
robots.

We focused on the GLOBAL model using broadcast control
inputs specified in the global reference frame. This system
model, in an obstacle-free workspace, is uncontrollable be-
cause it has only two controllable degrees of freedom. We
proved that adding a single obstacle makes the system con-
trollable for any number of robots. Additionally, we showed
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TABLE I
TASK COMPLEXITY FOR n ROBOTS AND THE THREE CONTROL

ARCHITECTURES OF EQN. (1). MANIPULATION IS COMPARED FOR A

PATH WITH m STRAIGHT-LINE SEGMENTS.

Commands O(·) Sensing

Task A
D

D
R

E
SS

A
B

L
E

L
O

C
A

L

G
L

O
B

A
L

A
D

D
R

E
SS

A
B

L
E

L
O

C
A

L

G
L

O
B

A
L

position control n n n 3n 3n 2n
compression n n 1 3n 3n 4

move in unison n n 1 0 3n 0
dispersion n n 1 3n 3n 4

manipulation nm nm m 2n 3n 4
form closure n n 1 3n 3n 2n
force closure n n N/A 3n 3n N/A

that motion-planning in BLOCKWORLD with multiple robots
and fixed and moveable squares is PSPACE-complete. An
open problem is determining the complexity of motion
planning with multiple robots and only fixed squares. Our
algorithm for position control uses a single obstacle. This
algorithm concentrates the task complexity into the (large)
sequence of moves. An alternative approach is to design
complex environments that can enable position control with a
small number of moves. We will explore this design space of
environmental vs. movement-sequence complexity in future
work.

We demonstrated through extensive testing with human
subjects that many manipulation tasks can be reliably com-
pleted, even by novice users, under this system model.
Results were validated through hardware experiments using
over 100 robots, and simulations with large populations of
robots.

There are a number of things we cannot do with the
GLOBAL model of Eqn. (1). If two robots are in identical
environments, and start in identical states, they cannot be
differentiated. The same control sequence applied to each
will produce the same results. We note that this only applies
to deterministic systems. Stochastic systems, such as the
interleaved array of obstacles in Fig 1, can differentiate iden-
tical robots. Force closure on an object is a second impossible
task, but we demonstrated that equipping robots to adhere to
an object enables them to steer the object along a trajectory.
Our hardware experiments illustrated that orientation control
in a concave boundary with no interior obstacles is difficult.
In a frictionless environment, orientation control would be
impossible. Similarly, we cannot simultaneously generate
velocities in different directions.

Many of the tasks we demonstrated could be combined
for tasks that require large populations such as (1) search
and coverage tasks, (2) distributed object manipulation and
assembly, (3) parallel procurement and delivery. Future work
should expand our experiments through large-scale online
simulators, enabling larger populations of robots and re-
fined experimental control. We want to explore the level of
state feedback required to complete a task—could a trained
user steer a million robots through a maze using only the

mean and variance of the position distribution? Would the
bounding-box of the population be sufficient?
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