Common-Source Amplifier

* “Common” means “grounded” or more generally, “connected to a DC supply”

What is going on with the load resistor R_L?

DC level of the output voltage is NOT zero ... but

A “typical load” does not draw much if any DC current ... because it is non-linear and the load resistor is the load’s small-signal model!

What is a “typical load”?

DC Bias Point of the Common-Source Amplifier

For biasing, we

1. ignore the small-signal source vs and its small-signal resistance: \(R_S \to 0 \, \Omega \)
2. ignore the load resistor (since it’s a small-signal resistance, too): \(R_L \to \infty \, \Omega \)

Where to set \(V_{OUT} \)?
Graphical “Load-Line” Analysis

The current through R_D must equal the drain current.

$$I_D = \frac{V_{DD} - V_{OUT}}{R_D} = I_{R_D}$$

What does this equation mean?
Small-Signal Model of CS Amplifier

* Substitute parameters at operating point selected so that $V_{OUT} \approx V_{DD}/2$

* Find two-port parameters of this amplifier:
 “natural” to use the transconductance form

\[R_{in} = \]

\[R_{out} = \]

\[G_m = \]
Two-Port Model of Common-Source Amplifier

* Attach the source and load to find output current as a function of the source voltage

Infinite input resistance is ideal for a voltage input

Output resistance increases with R_D increasing, but DC drain current I_D will decrease and g_m will decrease with $I_D^{1/2}$
Current-Source Supplies

* A current source to supply current, rather than a resistor, allows a high DC current for the device with a large incremental (small-signal) resistance.

The plot of i_{SUP} vs. v_{SUP} is: (note that v_{SUP} must be positive)
Common-Source with Current Source Supply

* R_D is replaced with idealized current source with internal resistance

$$i_{OUT} = I_{OUT} + i_{cut}$$

$$v_{OUT} = v_{OUT} + v_{out}$$

* For DC bias analysis, the small-signal source (with R_S) and the load resistor R_L are eliminated, along with the internal resistance r_{oc} of the current source
Graphical Analysis of CS Amplifier with Current-Source Supply

The region of input bias voltage V_{BIAS} for which the current source and the MOSFET are in their constant-current regions is extremely small
Common-Source/Current-Source Supply Models

* The small-signal model is identical to the resistor supply, except that the current source’s internal resistance r_{oc} replaces R_D

Tradeoffs are different from case of resistor load since I_D is now decoupled from the small-signal current supply resistance r_{oc}
p-Channel Common-Source Amplifier

* Source of p-channel is tied to positive supply; current supply sinks I_{SUP} to ground or to lower supply

* DC bias:

 Eliminate small-signal sources; control voltage is $V_{SG} = V_{DD} - V_{BIAS}$
p-Channel CS Small-Signal Model

p-channel MOSFET small-signal model has the source at the top

Transform this into a circuit with v_{gs} as the control voltage

\[+ \quad v_{gs} \quad - \]
\[s \quad g \quad d \]
\[g_m v_{sg} \quad r_o \quad r_{oc} v_{out} \]
\[+ \quad - \]
\[i_{out} \]