npn BJT Amplifier Stages: Common-Emitter (CE)

1. Bias amplifier in high-gain region

Note that the source resistor R_S and the load resistor R_L are removed for determining the bias point; the small-signal source is ignored, as well.

Use the load-line technique to find $V_{BIAS} = V_{BE}$ and $I_C = I_{SUP}$.

2. Determine two-port model parameters
The small-signal model is evaluated at the bias point; we assume that the current gain is $\beta_0 = 100$ and the Early voltage is $V_{An} = 25$ V:

$$g_m = \frac{I_C}{V_{th}} \text{ (at room temperature)}$$

$$r_\pi = \frac{\beta_0}{g_m} = 10 \text{ k}\Omega$$

$$r_o = \frac{V_{An}}{I_C} = 100 \text{ k}\Omega$$

* Substitute small-signal model for BJT; V_{CC} and V_{BIAS} are short-circuited for small-signals
Two-Port Model: CE Amplifier

* Use transconductance amplifier form for model (*not* mandatory)

* \(R_{in} = r_{\pi} \), \(R_{out} = r_o \parallel r_{oc} \), \(G_m = g_m \) by inspection

* Compare with CS amplifier

 inferior input resistance

 superior transconductance

 about the same output resistance (assuming \(r_o \) dominates)
Common-Base Amplifier

Input current is applied to the emitter (with a bias current source) and the output current is taken from the collector
Common Base Two-Port Model

* See text for details of nodal analysis

\[R_{in} \equiv 1/g_m, R_{out} \equiv r_{oc} \left| \left| r_o \left(1 + g_m(r_\pi || R_S) \right) \right| \right|, A_i = -\beta_o / (1 + \beta_o) \equiv -1 \]

* CB stage is an excellent current buffer

Comparison with the CG stage:

Note the effect of the source resistance on the output resistance

If \(R_S \) is much greater than \(r_\pi \), then the output resistance is approximately:

\[R_{out} \approx r_{oc} \left| \left| \beta r_o \right| \right| \]
Common-Collector Amplifier

* Circuit configuration

* Biasing: if transistor is “on” (i.e., not cutoff), then

\[V_{BIAS} - V_{OUT} = 0.7 \text{ V.} \]

Alternative name ... emitter follower
Common Collector Two-Port Model

* Two-port model:

presence of rp makes the analysis more involved than for a common drain

\[\frac{1}{g_m + R_S/\beta_o} \]

\[r_{pi} + \beta_o (r_o \parallel r_{ox} \parallel R_L) \]

Note 1: both the input and the output resistances depend on the load and source resistances, respectively (note typo in Fig. 8.47 in text)

Note 2: this model is approximate and can give erroneous results for extremely low values of \(R_L \). However, it is very convenient for hand analysis.

Comparison with CD stage:

CC’s input resistance: high but not infinity

CC’s output resistance: generally lower (but watch out for large \(R_S \))
Summary of BJT Single-Stage Amplifiers

Why no pnp’s?
Single-Stage MOS and BJT Amplifier

<table>
<thead>
<tr>
<th>Amplifier Type</th>
<th>NMOS</th>
<th>PMOS</th>
<th>npn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Source/ Common Emitter (CS/CE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Gate/ Common Base (CG/CB)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Drain/ Common Collector (CD/CC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>