Diode-Transistor Logic (DTL)
Diode Logic

- Diode Logic suffers from voltage degradation from one stage to the next.
- Diode Logic only permits the OR and AND functions.
- Diode Logic is used extensively but not in integrated circuits!
Level-Shifted Diode Logic

With either input at 0V, $V_x = 0.7V$, D_L is just cut off, and $V_{OUT} = 0V$.

With both inputs at 1V, $V_x = 1.7V$ and $V_{OUT} = 1V$.

With $V_A = V_B = 5V$, both input diodes are cut off. Then

$$V_{OUT} = R_L \left(\frac{V_{CC} - 0.7V}{R_H + R_L} \right)$$

- Level shifting eliminates the voltage degradation from the input to the output. However,
- the logic swing falls short of rail-to-rail, and
- the inverting function still is not available without using a transistor!
Diode-Transistor Logic (DTL)

If any input goes high, the transistor saturates and V_{OUT} goes low.

If all inputs are low, the transistor cuts off and V_{OUT} goes high.

This is a NOR gate.

“Current Hogging” is a problem because the bipolar transistors cannot be matched precisely.
Diode-Transistor Logic (DTL)

- If all inputs are high, the transistor saturates and V_{OUT} goes low.
- If any input goes low, the base current is diverted out through the input diode. The transistor cuts off and V_{OUT} goes high.
- This is a NAND gate.
- The gate works marginally because $V_D = V_{BEA} = 0.7V$.

Improved gate with reversed diodes.
Diode-Transistor Logic (DTL)

- If all inputs are high, $V_x = 2.2\,\text{V}$ and the transistor is saturated.
- If any input goes low (0.2V), $V_x = 0.9\,\text{V}$, and the transistor cuts off.
- The added resistor R_D provides a discharge path for stored base charge in the BJT, to provide a reasonable t_{PLH}.
DTL VTC

The noise margins are more symmetric than in the RTL case.
DTL Power Dissipation

\[R_B = 3.4k\Omega \]
\[R_C = 4.8k\Omega \]
\[R_D = 1.6k\Omega \]

- Scaling \(R_B \) and \(R_C \) involves a direct tradeoff between speed and power.

\[P_L = \]
\[P_H = \]
\[P = \]
DTL Fanout

$$R_B = 3.4\,k\Omega$$
$$R_C = 4.8\,k\Omega$$
$$R_D = 1.6\,k\Omega$$
$$\beta_F = 50$$

V_A, V_B, V_C

V_{CC}, X, V_{OUT}, Q_1, R_B, R_C, R_D

$\begin{align*}
I_{CS} &= \\
I_{BS} &= \\
I_{CS} &= \\
N_{max} &=
\end{align*}$

- Good fanout requires high β_F, large R_D/R_B.

University of Connecticut
930 Series DTL (ca 1964 A.D.)

One of the series diodes is replaced by Q_1, providing more base drive for Q_2 and improving the fanout ($N_{max} = 45$).

Does Q_1 saturate?

930 DTL Characteristics

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{OH} / V_{OL}</td>
<td>5.0V / 0.2V</td>
</tr>
<tr>
<td>V_{IH} / V_{IL}</td>
<td>1.5V / 1.4V</td>
</tr>
<tr>
<td>Fanout</td>
<td>45</td>
</tr>
<tr>
<td>Dissipation</td>
<td>10mW</td>
</tr>
<tr>
<td>t_P</td>
<td>75ns</td>
</tr>
</tbody>
</table>
930 DTL Propagation Delays

\[t_{PLH} \gg t_{PHL} \]

\[t_{PLH} = t_S + t_r / 2 \]

\[t_s = \]

\[t_r \approx \]

\[\beta_F = 50 \]

\[C_L = 5pF \]

\[b = 50 \]

\[C_L = 5pF \]

\[t_s = \]

\[t_r \approx \]
Transistor-Transistor Logic (TTL)
Why TTL?

- The DTL input uses a number of diodes which take up considerable chip area.
- In TTL, a single multi-emitter BJT replaces the input diodes, resulting in a more area-efficient design.
- DTL was ousted by faster TTL gates by 1974.
Basic TTL NAND Gate.

ALL INPUTS HIGH.
- \(Q_I \) is reverse active.
- \(Q_O \) is saturated.
- \(V_{OL} = V_{CES} \)

ANY INPUT LOW.
- \(Q_I \) is saturated.
- \(Q_O \) is cut off.
- \(V_{OH} = V_{CC} \)

Multi-emitter transistor. Forward-biased emitter base junctions override reverse-biased junctions in determining the base and collector currents.
TTL Switching Speed: t_{PLH}

- The depletion capacitance of the Q_I EB junction must discharge;
- Base charge must be removed from the saturated Q_S;
- Ditto for Q_O; and
- The capacitive load must be charged to V_{CC}.

Multi-emitter transistor. Forward-biased emitter base junctions override reverse-biased junctions in determining the base and collector currents.
TTL Switching Speed: \(t_{PLH} \)

- The time required to discharge the \(Q_I \) depletion layers is \(< 1 \text{ns} \).

- The time required to extract the \(Q_S \) base charge is also \(< 1 \text{ns} \):
 - \(Q_I \) becomes forward active;
 - \(|I_{BR}| \) becomes large for \(Q_S \).

- Removal of base charge from \(Q_O \) is similar to the DTL case. With \(R_D = 1 \, \text{kΩ} \), \(t_s = 10 \text{ns} \) (these are typical values for 7400 series TTL).
Charging of the capacitive load can be slow with “passive pullup.” e.g., with a 5kΩ pull-up resistor and a 15 pF load (ten TTL gates) $RC = 75\, \text{ns}$ and $t_r = 2.3RC = 173\, \text{ns}$!
TTL with Active Pullup

- In the previous example, the dominant switching speed limitation was the charging of capacitive loads through the pullup resistor.
- A small pullup resistance will improve the switching speed but will also increase the power and reduce the fanout.

With active pullup, we can achieve the best of both worlds:

- When the output is low, Q_P is cutoff, minimizing the power and maximizing the fanout;
- when the output goes high, Q_P becomes forward active to provide maximum drive current for a quick rise time.
TTL with Active Pullup

- With a high output,
 - Q_S is cutoff
 - Q_P is forward active
- With a low output,
 - Q_S is saturated
 - Q_P should be cutoff

The low output case is unsatisfactory with this circuit:

\[
V_{BP} = \quad V_{EP} =
\]

\[
V_{BEP} =
\]

The “Totem Pole Output” solves this problem.
TTL with “Totem Pole Output”

- During turn-off, Q_S switches off before Q_O.
- Q_P begins to conduct when
 \[V_{CS} = V_{CESO} + V_D + V_{BEAP} = 1.6V \]
- Initially,
 \[I_{BP} = \]

R_{CP} limits the collector current to a safe value.
Typical 74xx Series TTL

The anti-ringing diodes at the input are normally cut off. During switching transients, they turn on if an input goes more negative than -0.7V.

<table>
<thead>
<tr>
<th>74xx TTL Characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PLH}</td>
</tr>
<tr>
<td>t_{PHL}</td>
</tr>
<tr>
<td>Fanout</td>
</tr>
<tr>
<td>Dissipation</td>
</tr>
<tr>
<td>PDP</td>
</tr>
</tbody>
</table>

1/3 T. I. 7410
triple 3-input NAND

$V_{CC}=5V$

4kΩ 1.6kΩ 130Ω

Q_I Q_S D_L Q_O

V_{OUT}

V_A V_B V_C
Standard TTL: VTC

- $\beta_F = 70$
- $\beta_R = 0.1$

\[V_{CC} = 5V \]

- $V_{IN} = 0.$ Q_I is saturated; Q_S, Q_O are cutoff; Q_P is forward active.

- $V_{OH} =$

 (the drop in the base resistor is small)

- **First Breakpoint.** Q_S turns on.

- $V_{IL} =$

 (at the edge of conduction, $I_C = 0$)

1/6 NSC 7404

Hex Inverter
Standard TTL: VTC

- **Second Breakpoint.** Q_O turns on.

 $V_{IN} =$

 $V_{OUT} =$

- **Third Breakpoint.** Q_O saturates.

 $V_{IH} =$
Standard TTL: VTC

1/6 NSC 7404
Hex Inverter

$V_{CC} = 5V$

V_{IN}

V_{OUT}

$V_{NML} =$

$V_{NMH} =$

$\beta_F = 70$

$\beta_R = 0.1$
Standard TTL: Low State R_{OUT}

For the saturated BJT with $I_B = 2.4$ mA, the output impedance is

$$R_{OL} =$$

The very low output impedance means that noise currents are translated into tiny noise voltages. Thus only a small noise margin is necessary.
Standard TTL: Input Current

- I_{IH} (Q is reverse active)

$\quad I_{BI} =$

$\quad I_{IH} =$

- I_{IL} (Q is saturated)

$\quad I_{IL} =$
Standard TTL: DC Fanout

With high inputs,

\[I_{CI} = \]
\[I_{CS} = \]
\[I_{BO} = \]

To keep \(Q_O \) saturated,

\[N_{\text{max}} = \]

AC considerations usually limit the fanout to a much lower number.
Standard TTL: DC Dissipation

\[P_H = \]

\[P_L = \]

\[P = \]
Advanced TTL Designs

- **Schottky Clamping.** Q_S and Q_O may be Schottky clamped, preventing saturation. This greatly improves t_{PLH}.
- **Darlington Pullup.** The Darlington pullup arrangement increases the average output drive current for charging a capacitive load. Although R_{CP} limits the maximum output current, this maximum drive is maintained over a wider range of V_{OUT} than with a single pullup transistor.
- **Squaring Circuit.** Active pull-down for the base of the output transistor squares the VTC, improving the low noise margin. An added benefit is faster charge removal for the output transistor.
- **Improved Fabrication.** Smaller devices, and oxide isolation, have steadily reduced parasitic capacitances and reduced RC time constants.
Darlington Pullup

- Q_{P2} is added, forming a Darlington pair with Q_P.
- The EB junction of Q_{P2} introduces a 0.7V level shift, so DL can be eliminated.
- Q_{P2} can not saturate, so Schottky clamping is not necessary.
- R_{EP} is needed to provide a discharge path for Q_{P2} base charge.

The Darlington emitter follower provides a very low output impedance, approaching R_C/β^2. This greatly reduces the rise time.
There is no path for Q_S emitter current until Q_D and Q_O turn on.

Q_S and Q_O begin to conduct simultaneously.

BP1 is eliminated from the VTC; in other words, the VTC is “squared.”

V_{IL} is increased, improving the low noise margin.
Schottky TTL (74S / 54S Series)

1/4 74S00
quad 2-input NAND

$V_{CC} = 5V$

- Q_I
- Q_S
- Q_P
- Q_P2
- Q_D
- Q_O

Features:
- Schottky clamping
- Schottky anti-ringing diodes
- Darlington pullup circuit
- Squaring circuit
- Scaled resistors

Performance:
- $P = 20$ mW
- $t_P = 3$ ns (15 pF)
- $PDP = 60$ pJ