Today

- Complete lower bound for parity.
- Hardness of Uniquely satisfiable instances.

Recall Lemma 1

Lemma 1: If $f:\{0,1\}^n \to \{0,1\}$ is computed by a depth d circuit of size s, then there exists a set $S\subseteq \{0,1\}^n$ of size $|S|\geq 3/42^n$ such that $f:S\to \{0,1\}$ computed by a polynomial over \mathbb{Z}_3 of degree $(\log s)^{O(d)}$.

Will summarize theorem and proof later.

But first prove lemma.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Proof of Lemma 1

Main steps:

- Assume w.l.o.g. that circuit has only OR gates and NOT gates (blows up size by constant factor).
- Replace each gate by a polynomial.
- NOT gate maps $x \mapsto 1 x$: Already a polynomial.
- For OR gates, will pick polynomials of degree $O(\log s)$ probabilistically.
- Will show, that for fixed input, any fixed gate computes output correctly w.p. at

least 1 - 1/(4s). By union bound, whole circuit computes answer correctly w.p. 3/4.

- Conclude: Exist polynomials, of degree $\log s$, for each gate that compute output correctly on 3/4ths of the inputs.
- Degree of output function is then $(\log s)^{O(d)}$.

Prob. polynomial for the OR function

Naive answer: $OR(y_1,\ldots,y_k)=1-\prod_{i=1}^k(1-y_i)$. Answer is always right. But degree is k - too much.

Step 1: Get the answer right w.p. 1/2 with polynomials of degree 2.

Basic idea: pick $a_1, \ldots, a_k \in \mathbb{Z}_3$ at random. $p_{\mathbf{a}}(\mathbf{y}) = \sum_{i=1} a_i y_i$.

Claim 1: $p_{a}(0) = 0$.

Claim 2: $\Pr_{\mathbf{a}}[p_{\mathbf{a}}(\mathbf{y}) = 0] \le 1/3.$

Proof: Let $Q(\mathbf{z}) = \sum_{i=1}^k y_i z_i$. Q is a non-zero polynomial of degree 1 in its argument. Evaluation at random $\mathbf{z} = \mathbf{a}$ leaves it non-zero.

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Prob. polynomial for the OR function (contd.)

The polynomial $p_{\mathbf{a}}^2$ is always 0 or 1 and computes the OR function on any fixed input w.p. 2/3.

Pick $\mathbf{a}_1, \dots, \mathbf{a}_l$, and take the OR of polynomials $p_{\mathbf{a}_i}$.

Gives degree 2ℓ polynomial that is right w.p. $1-(2/3)^\ell$.

What we gained? Will pick $\ell = \log s$ to make degrees logarithmically smaller than fan-in.

What we lost? Not guaranteed to be right.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Prob. polynomial for circuit

- ullet Replace every gate by degree 2ℓ poly randomly.
- Resulting circuit computes a polynomial of degree $(2\ell)^d$.
- Prob. it gets the output wrong (for fixed input) is at most $s(1/3)^{\ell}$.
- Lemma follows.

Summarizing proof of parity lower bound

- Small depth circuits compute low degree function of most of the output.
- Parity has small depth circuit implies parity has low-degree polynomial representing it on most inputs.
- Parity has small depth circuit implies $\prod_{i=1}^n x_i$ has low-degree polynomial representing it on most inputs.
- $\prod_{i=1}^n x_i$ has low degree polynomial, implies all Boolean functions represented by low-degree polynomials on most inputs, and thus are in the linear span of small number $(\sum_{i=0}^{n/2+D})$ of monomial functions.

• But the Boolean functions (and in particular the δ_x functions, given by $\delta_x(y)=1$ if x=y and 0 o.w.) require large basis on large domains.

New topic: Unique satisfiability

Motivation: Hard functions in cryptography.

Diffie-Hellman motivation for cryptography:

The map $(\phi, \mathbf{a}) \mapsto \phi$, where \mathbf{a} satisfies ϕ is easy to compute but hard to invert.

So maybe similarly the map $(p,q)\mapsto p\cdot q$ is also easy to compute but hard to invert.

Can now start building cryptographic primitives based on this assumption.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Issues

Many leaps of faith:

- Specific problem has changed.
- The inputs have to be generated randomly.
- They have to have known "satisfiability".
- etc. etc.

Initial big worry: The map $(\phi, \mathbf{a}) \mapsto \phi$ loses information, while $(p, q) \mapsto p \cdot q$ does not. And NP-hardness requires "loss of information".

Worry goes away, if we know ϕ has only one satisfying assignment. But then is problem as hard?

Formalizing the problem

Promise Problems: Generalize languages L. $\Pi = (\Pi_{YES}, \Pi_{NO}), \ \Pi_{YES}, \Pi_{NO} \subseteq \{0,1\}^*, \ \Pi_{YES} \cap \Pi_{NO} = \emptyset.$

Algorithm A solves problem Π , if:

(Completeness): $x \in \Pi_{YES} \Rightarrow A(x)$ accepts.

(Soundness): $x \in \Pi_{NO} \Rightarrow A(x)$ rejects.

(Can extend to probabilistic algorithms naturally.)

Unique SAT: $USAT = (USAT_{YES}, USAT_{NO})$:

 $\Pi_{\rm YES} = \{\phi | \phi \ \ {\rm has \ \ exactly \ \ one \ \ sat.}$ assgmnt.}.

 $\Pi_{\mathrm{NO}} = \{\phi | \phi \text{ has no sat. assgmnts.} \}.$

Formal question: Is $USAT \in P$? (Does there

exist a polytime algorithm A solving USAT)?

Valiant-Vazirani theorem

Theorem: $USAT \in P$ implies NP = RP.

Proved via the following lemma.

Lemma: There exists a randomized reduction from SAT to USAT.

 $\phi \mapsto \psi$ such that $\phi \notin SAT$ implies $\psi \in USAT_{NO}$. $\phi \in SAT$ implies $\psi \in USAT_{YES}$ with probability 1/poly(n).

Again: Question stated without randomness, but answer mentions it! (Can also mention answer without randomness: NP \subseteq P/ $_{poly}$ or PH collapses etc.)

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

1.4

Proof Idea

 ψ will have as its clauses, all clauses of ϕ and some more. $(\psi(x) = \phi(x) \wedge \rho(x).)$

So hopefully, will reduce # sat. assgnmts to one.

Furthermore, can put any polynomial time decidable constraint $\rho(x)$ (Since every computation can be transformed into SAT. Exercise coming up.)

So what is $\rho(x)$ going to be?

Proof Idea

Suppose we know there exist M sat. assgnmts to ϕ .

Will pick a random function $h: \{0,1\}^n \rightarrow \{0,\ldots,M-1\}.$

Hopefully this distinguished satisfying assignments, and we can let $\rho(x)$ be the condition h(x) = 0.

Calculations imply this works out with constant probability.

Caveats in the solution

- How to do this reduction in polytime? Not enough time to represent h!
- Don't know M!

Amendments:

- Will pick pairwise independent hash function.
- Will guess M approximately (to within a factor of 2).

Things will work out!

©Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

17

Randomized reduction from SAT to USAT

Given ϕ :

- Pick $m \in \{2, \ldots, n+1\}$ at random (and hope that # satisfying assignments is between 2^{m-2} and 2^{m-1} .)
- Pick h at random from nice p.w.i. family H.
- Let $\psi(x) = \phi(x) \wedge (h(x) = 0)$.
- Output ψ .

Pairwise independent hash families

Defn: $H\subseteq\{f:\{0,1\}^n\to\{0,1\}^m\}$ is pairwise independent family if for all $\mathbf{a}\neq\mathbf{b}\in\{0,1\}^n$ and $\mathbf{c},\mathbf{d}\in\{0,1\}^m$

$$\Pr_{h \in H}[h(\mathbf{a}) = \mathbf{c} \text{ AND } h(\mathbf{b}) = \mathbf{d}] = (1/2^m)^2.$$

H is nice if $h \in H$ can be efficiently sampled and efficiently computed.

Example: Pick $A \in \{0,1\}^{m \times n}$ and $b \in \{0,1\}^m$ at random. Let $h_{A,b}(x) = Ax + b$. Then $H = \{h_{A,b}\}_{A,b}$ is a nice, pairwise independent family.

Proof: Exercise.

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Analysis

Let $S = \{x | \phi(x)\}.$

Hope: $2^{m-2} < |S| < 2^{m-1}$.

Claim: $Pr_m[$ Hope is realized $] \ge 1/n$.

Proof: Claim is true for some $m \in \{2, \dots, n+1\}$. Prob. we pick that m is 1/n.

Analysis (contd.)

Claim: $\Pr_h[$ Exactly one $x \in S$ maps to 0 — Hope $] \ge 1/8$.

Define G_x : Event that x maps to 0 and no other $y \in S$ maps to 0.

Prob. we wish to lower bound is (conditioned on Hope):

$$\Pr_h[\cup_{x\in S}G_x] = \sum_x \Pr_h[G_x]$$

(since G_x 's are mutually exclusive).

$$\Pr_h[h(x) = 0] = 1/2^m.$$

$$Pr_h[h(x) = 0 \text{ and } h(y) = 0] = 1/4^m.$$

$$\Pr_h[h(x) = 0 \text{ and } \exists y \in S - \{x\}, s.t.h(y) = 0] \leq |S|/4^m.$$

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

21

$$\Pr_h[G_x] \ge 1/2^m - |S|/4^m.$$

$$\Pr_h[\bigcup_x G_x] \ge |S|/2^m(1-|S|/2^m) \ge 1/8.$$

© Madhu Sudan, Spring 2002: Advanced Complexity Theory: MIT 6.841/18.405J

Concluding the analysis

With probability 1/8n reduction produces ψ with exactly one satisfying assignment. If you can decide satisfiability in such cases then can decide satisfiability probabilistically in all cases.