Today

e Complete lower bound for parity.

e Hardness of Uniquely satisfiable instances.
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Proof of Lemma 1

Main steps:

e Assume w.l.o.g. that circuit has only OR
gates and NOT gates (blows up size by
constant factor).

e Replace each gate by a polynomial.

e NOT gate maps z — 1 — x: Already a
polynomial.

e For OR gates, will pick polynomials of
degree O(log s) probabilistically.

e Will show, that for fixed input, any fixed
gate computes output correctly w.p. at
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Recall Lemma 1

Lemma 1: If f:{0,1}"™ — {0,1} is computed
by a depth d circuit of size s, then there
exists a set S C {0,1}" of size |S| > 3/42"
such that f : S — {0,1} computed by a
polynomial over Zs of degree (log s)°(%).

Will summarize theorem and proof later.

But first prove lemma.
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least 1 — 1/(4s). By union bound, whole
circuit computes answer correctly w.p. 3/4.

e Conclude: Exist polynomials, of degree
log s, for each gate that compute output
correctly on 3/4ths of the inputs.

e Degree of output function is then
(log 5)C(@).
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Prob. polynomial for the OR function

Naive answer:  OR(y1,...,yr) = 1 —
Hi;l(l — yi). Answer is always right. But
degree is k - too much.

Step 1: Get the answer right w.p. 1/2 with
polynomials of degree 2.

Basic idea: pick aq,... ,a; € Z3 at random.
pa(Y) = Zizl ;Y.

Claim 1: p,(0) = 0.

Claim 2: Pru[pa(y) = 0] < 1/3.

Proof: Let Q(z) = Zle yizi. @ is a non-
zero polynomial of degree 1 in its argument.
Evaluation at random z = a leaves it non-
zero.
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Prob. polynomial for circuit

e Replace every gate by degree 2/ poly
randomly.

e Resulting circuit computes a polynomial of
degree (2¢)%.

e Prob. it gets the output wrong (for fixed
input) is at most s(1/3)%.

e Lemma follows.
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Prob. polynomial for the OR function
(contd.)

The polynomial p2 is always 0 or 1 and
computes the OR function on any fixed input
w.p. 2/3.

Pick ai,...,a;, and take the OR of
polynomials p,,.

Gives degree 2/ polynomial that is right w.p.
1—(2/3)~

What we gained? Will pick £ = log s to make
degrees logarithmically smaller than fan-in.

What we lost? Not guaranteed to be right.
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Summarizing proof of parity lower bound

e Small depth circuits compute low degree
function of most of the output.

e Parity has small depth circuit implies parity
has low-degree polynomial representing it
on most inputs.

e Parity has small depth circuit implies
H?zl x; has low-degree polynomial
representing it on most inputs.

e []7_, z; has low degree polynomial, implies
all Boolean functions represented by low-
degree polynomials on most inputs, and
thus are in the linear span of small number

(Z?=/(2)+D) of monomial functions.
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e But the Boolean functions (and in
particular the 4§, functions, given by
d:(y) =1 if x =y and 0 o.w.) require
large basis on large domains.

Madhu Sudan, : 9

Issues

Many leaps of faith:

e Specific problem has changed.
e The inputs have to be generated randomly.
e They have to have known “satisfiability”.

e ectc. etc.

Initial big worry: The map (¢,a) — ¢ loses
information, while (p, ¢) — p-q does not. And
NP-hardness requires “loss of information”.

Worry goes away, if we know ¢ has only one
satisfying assignment. But then is problem as
hard?
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New topic: Unique satisfiability

Motivation: Hard functions in cryptography.
Diffie-Hellman motivation for cryptography:

The map (¢,a) — ¢, where a satisfies ¢ is
easy to compute but hard to invert.

So maybe similarly the map (p,q) — p-q is
also easy to compute but hard to invert.

Can now start building cryptographic
primitives based on this assumption.
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Formalizing the problem

Promise Problems: Generalize languages L.
II = (Iygs,no), Ilyes,IIno € {0,1},
Mygs NIIno = 0.

Algorithm A solves problem II, if:
(Completeness): = € IIygs = A(z)
accepts.
(Soundness): z € IIxo = A(z) rejects.

(Can extend to probabilistic algorithms
naturally.)

Unique SAT: USAT = (USATYEs, USATNQ)Z
IIygs = {¢|¢ has exactly one sat.
assgmnt. }.
IIno = {¢p|¢ has no sat. assgmnts.}.

Formal question: Is USAT € P? (Does there
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exist a polytime algorithm A solving USAT)?
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Proof Idea

1 will have as its clauses, all clauses of ¢ and
some more. (¢Y(x) = ¢(z) A p(z).)

So hopefully, will reduce # sat. assgnmts to
one.

Furthermore, can put any polynomial time
decidable constraint p(z) (Since every
computation can be transformed into SAT.
Exercise coming up.)

So what is p(z) going to be?
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Valiant-Vazirani theorem

Theorem: USAT € P implies NP = RP.
Proved via the following lemma.

Lemma: There exists a randomized reduction
from SAT to USAT.

¢ — 1 such that ¢ € SAT implies ¢ €
USATyo. (b € SAT implies ¢ € USATvEs
with probability 1/poly(n).

Again: Question stated without randomness,
but answer mentions it! (Can also mention
answer without randomness: NP C P/, or
PH collapses etc.)
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Proof Idea

Suppose we know there exist M sat. assgnmts

to ¢.

Will pick a random function A : {0,1}" —
{0,...,M —1}.

Hopefully  this  distinguished satisfying
assignments, and we can let p(x) be the
condition h(x) = 0.

Calculations imply this works out with
constant probability.
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Caveats in the solution

e How to do this reduction in polytime? Not
enough time to represent h/!

e Don't know M!
Amendments:

e Will pick pairwise independent hash
function.

e Will guess M approximately (to within a
factor of 2).

Things will work out!
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Randomized reduction from SAT to
USAT

Given ¢:
e Pick m € {2,... ,n+ 1} at random (and
hope that # satisfying assignments is

between 2™~2 and 2™~1))

e Pick h at random from nice p.w.i. family
H.

o Let ¥(z) = ¢(x) A (h(z) = 0).

e Output .
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Pairwise independent hash families

Defn: H C {f : {0,1}" — {0,1}™} is
pairwise independent family if for all a #
b € {0,1}" and ¢,d € {0,1}™

P [h(a) = ¢ AND h(b) =d] = (1/2™)2.

H is nice if h € H can be efficiently sampled
and efficiently computed.

Example: Pick A € {0,1}™*™ and b €
{0,1}™ at random. Let h4(z) = Az +b.
Then H = {hap}ap is a nice, pairwise
independent family.

Proof: Exercise.
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Analysis

Let S = {z|¢p(x)}.
Hope: 2m—2 < |S] < 2™~ L,
Claim: Pr,,[ Hope is realized | > 1/n.

Proof: Claim is true forsome m € {2,... ,n+
1}. Prob. we pick that m is 1/n.
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Analysis (contd.) Prp|G] > 1/2™ —|S|/4™.

Pry[UsG,] > [S]/2™(1 = |5]/2™) = 1/8.
Claim: Pry[ Exactly one z € S maps to 0 —
Hope | > 1/8.

Define G,: Event that x maps to 0 and no
other y € S maps to 0.

Prob. we wish to lower bound is (conditioned
on Hope):

Pry[UsesGa] = 3, Pra[G.]

(since G's are mutually exclusive).
Prplh(z) = 0] =1/2™,

Prp[h(z) = 0 and h(y) = 0] = 1/4™.

Prplh(z) = 0 and Jy € S — {z},s.t.h(y) =
0] < |S]/4™.
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Concluding the analysis

With probability 1/8n reduction produces
with exactly one satisfying assignment. If you
can decide satisfiability in such cases then
can decide satisfiability probabilistically in all
cases.
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