6.841 Advanced Complexity Feb. 10, 2003

Lecture 2

Lecturer: Madhu Sudan Scribe: Yael Tauman

Today:

e Savitch’s theorem
e Diagonalization
o Relativization

e Introduction to Alternations

1 Savitch’s Theorem

Savitch’s theorem considers the relationship between non-deterministic space and deterministic space.
Theorem 1 (Savitch) For all constructible functions s(n) > lg(n), NSPACE(s(n)) C SPACE(O(s(n)?)).

The idea of the proof is first to take an NL complete language and prove that it is in SPACE(O(lg®n)),
and then to generalize this for every constructible function s(n) > lgn. The NL complete language that we

use is
PATH = {(G, s,t,1) : 3 path of length < from s to ¢ in the directed graph G}.

Proof The proof is carried out by proving the following two Lemmas.

Lemma 2 PATH € SPACE(O(Ig” n)).
Lemma 3 Lemma 2 suffice to prove Savitch’s theorem.

Proof-Sketch of Lemma 2: Consider the following deterministic algorithm for PAT H. On input (G, s, t,1),
the algorithm operates as follows:

1. Compute G2.

Recall the definition of G?: The vertices in G2 are the same as in G and for every pair of vertices (u,v),
the edge (u,v) is in G? if and only if there exists a path of length < 2 from u to v in G.

2. Output PATH(G?,s,t,1).
Recall the following claim, given in the previous lecture.

Claim 4 For any pair of languages Ly, Ly, if L1 < Lo and the reduction can be done using space s1, and if
Ly € SPACE(SQ) then L, € SPACE(281 + 82).1

Since the first step of the algorithm uses space O(lgn), the claim implies that the above algorithm uses space
O(lgl x1gn) = O(1g® n).

Proof-Sketch of Lemma 3: By a standard padding argument, one can see that if s(n) > lgn then
we can always pad the input with enough zeros so that the algorithm using space s(n), now uses space lgn/,
where n/ = 25(") is the length of the input after it has been padded. Then this can be done in deterministic
space O(lg”n') = O(s(n)?). A

In complexity theory, we get a kick out of findings relation between different complexity classes. More
specifically, we would like to find reductions such as NL = L, but also, we would like to prove that certain
reductions do not exist. Unfortunately, not much is known regarding the latter. The main tool used to
achieve such impossibility results is the diagonalization method.

IThis is a correction to the previous lecture where it was claimed that L; € SPACE(s1 + s2).

2-1



2 The Diagonalization Method

The diagonalization technique was introduced by Cantor in the 18’th Century. It is the most powerful
tool to prove that certain reductions do not exist. For example, the time and space hierarchy theorems,
mentioned in the previous lecture, are based on diagonalization. Other results that use diagonalization are
Rice’s theorem and Ladner’s Theorem, which will be described towards the end of this lecture. The basic
idea of the diagonalization technique is the following. Take a complexity class (a collection of languages) C
and explicitly demonstrate L ¢ C as follows.

Strings

g 0 1 00 01 10 11
0
0

Ll
2 c
4

Enumerate all languages in C: Ly, Lo, L3 ... and enumerate all strings (which correspond to integers):
$,0,01,10,11,... Correspond to every language L; and every string w the value 1 if w € Ly and the value
0 otherwise. Demonstrate that L ¢ C by proving that for every k, k € L iff k ¢ L. That is, show that the
language L corresponds to a flip of the main diagonal.

In many cases the diagonalization technique requires a special enumeration, namely, a constructive one.
For example, let us use the diagonalization method to prove that TIM E(n®) C TIM E(n).

1. Enumerate all linear-time Turing machines: M;, My, M3, ...
2. Define a Turing machine M as follows: Vk, M (k) # My(k).
3. Show that M runs in TIM E(n?).

The question to be asked is how can we enumerate all linear-time Turning machines? One way is to enumerate
all Turing machines rather than just the linear-time ones. However, then the Turing machine obtained
from the diagonalization method will not be in computable in TTM E(n®). We overcome this problem
by enumerating all Turing machines: Mj, Ma,... and restricting their running time to some super-linear
function, such as nlgn. Thus, we get an enumeration of all Turing machines which run in TIM E(nlgn):
M, M}, ... Unfortunately, this will not necessarily give us all linear time Turing machines. The reason is
that it may be the case, for example, that for infinitely many k’s, machines My run in time n + k (which is
linear in n but exponential in the length of k). By restricting their running time to nlgn, we truncate the
running time of these (linear-time) Turing machines, since the running time of My (k) is lg k + k whereas the
running time of M; (k) is only lg klglg k.

We overcome this problem by enumerating the Turing machines in such a way that every machine appears
infinitely often. This can be done, for example, as follows. Take any enumeration: My, M, ..., and transform
it to the following redundant enumeration: My, M1, My, My, Ma, M3, .... Now, when trying to diagonalize

2-2



against My, since My appears infinitely often, it appears also in place > 2¥. The running time of My (2¥) is
1g(2%)+k = 2k which is smaller than lg(2¥)Iglg(2¥) = klgk, and thus its running time will not be truncated.

It remains to note that the Turing machine M, defined by the diagonalization method, is computable in
TIME(n?).

The main question to be asked is:

Can diagonalization prove NP # P %

In the 70’s, Baker, Gill and Solovay gave negative evidence for this question. They introduced the notion of
relativization, and used this notion to prove that, in some sense, “diagonalization cannot prove NP # P.”

3 Relativization

We use the following notations

1. PO is the set of all languages accepted by deterministic polynomial-time oracle Turing machines with
oracle access to O.

2. NP? is the set of all languages accepted by non-deterministic polynomial-time oracle Turing machines
with oracle access to O.

Baker, Gill and Solovay noticed the following observation.

Observation: If one can use the diagonalization technique to show that NP ¢ P, then one can also
use the diagonalization technique to show that for every language O, NP? ¢ PO.

The idea behind this observation is the following. If we can prove NP ¢ P using diagonalization, then
it means that we can find a non-deterministic polynomial-time Turing machine N that can simulate every
polynomial-time Turing machine M and negate the answer. We can augment these machines into oracle
Turing machines and obtain similar results. In other words, N© can simulate every polynomial-time oracle
Turing machine M© and negate the answer. Thus, a similar argument shows that NP ¢ PO.

Theorem 5 (BGS) There exist oracles A and B such that
1. PA=NP4, and
2. PB £NP5,

Note that the first part of the BGS Theorem together with the above observation imply that it is impossible
to prove P # NP using diagonalization. For completeness we prove both parts of the BGS Theorem.

Proof-Sketch The first part is straightforward. The idea is to take some language that is sufficiently
powerful e.g. PSPACE-complete. Let A be TQBF. Clearly P4 C NP4. For the other direction, as TQBF is
PSPACE-complete, we have

NP# C NPSPACE = PSPACE C P4.

The middle step follows from Savitch’s theorem. For the second part, the idea is that non-determinism gives
us more powerful access to the oracle, allowing us to ask exponentially more questions than allowed by a
deterministic Turing machine. For any language B, let

L(B) = {z|3w : |z| = |w| and B(w) = 1}

One can easily observe that for every language B, L(B) € NPP because we can guess w the same length as
z, and check if B(w) = 1. We want to show that there exists a langauge B for which L(B) ¢ PE. This will

2-3



be done by enumerating all Turing machines M;, Ma,... and showing that there exists a language B such
that for every k, L(B) # L(M®). The language B will be defined as follows. We denote by M’ the Turing
machine M with oracle access to an undetermined oracle. For every k = 1,2,... simulate M ,Z (0%). Reply
to all oracle questions with 0, unless a question has already been set. In this case answer according to the
previous setting.

L. If M} (0%) = YES the set BN {0,1}* = 0.

2. If M} (0%) = NO then choose a string y € {0, 1}* that has not yet been set and set y € B. Intuitively,
the reason that there exists such a string y € {0,1}* is that for every i = 1,... ,k — 1, M} runs in
polynomial-time and thus at most poly(k) many strings in {0, 1}* are set.

In both cases, L(MP) # L(B), because M}?(0") = YES if and only if 0" ¢ L(B).

Note that the technique, which was used to prove that diagonalization doesn’t work, is diagonalization.
One can similarly prove that there exists an oracle B such that NP? # coNPZ.

The diagonalization method was also useful in other contexts. It was used, for example, in Rice’s Theorem
and Ladner’s Theorem.
Theorem 6 (Rice) If NP # P then determining whether L € NP is also in P is undecidable.

Theorem 7 (Ladner, 1973) If P # NP, then for all k > 1, there are languages L1,...,L; € NP such
that
L<pLli<p---<pLp<pL’

where L € P and L' is NPcomplete.

4 Introduction to Alterations

Relativization, which was used in the BGS Theorem, turned out to be a very interesting concept. Consider
the following question: why do we use TQBF (a PSPACE-complete) problem for the first part of BGS
Theorem? Isn’t an NP-complete problem sufficiently powerful? That is, isn’t NP* AT — pSAT — NP? To
answer this question, we should answer if NPNY = NP? Note that if NP = NP then it follows that
NP = coNP. The reason is that coNP C NPN'. Thus, we tend to believe that NP # NP™. Consider for
example the following language:

MINDNF = {(¢,k) : where ¢ is a DNF formula and 3 DNF formula ¢ s.t. || < k and % is equivalent to ¢}.

This language captures what can be done in NP,
Proposition 8 MINDNF is in NP,

Proof We can construct a non-deterministic oracle Turing machine, which uses a SAT oracle, to solve
MINDNF.

1. First guess 9 of length < k.
2. Ask SAT oracle if there exists an assignment x such that ¥ (z) # ¢(x).
3. Accept if oracle says No, otherwise reject.
|
This motivated Meyer and Stockmeyer to define a hierarchy of complexity classes starting with
v = NPP,

We will elaborate on this hierarchy in the next lecture.

2-4



