Today

e Randomized complexity classes

e Randomized computation

— Testing polynomial identities.
— Testing s-t connectivity in undirected
graphs.

e Amplification: BPP in P/l

e BPP in PH.
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Complexity Classes

e /PP, RP, co-RP, BPP: for zero-sided, one-
sided, other-sided, two-sided errors, all in
polynomial time.

e /L, RL, co-RL, BPL: Analogous classes.
Catches:

— Two-input machine has one-way access
to random tape.
— Running time bounded by polynomial

(why?).
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Logical terminology

e Completeness: The lowest probability with
which instances in L are accepted.

e Soundness (error): The highest probability
with which instances not in L are accepted.

e For system to be interesting Completeness
must be larger than soundness error. If it
is bounded away, have BPP.
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Testing Polynomial Identities

Will pose as an “oracle” problem:

Given: An oracle A : 7" — 7, such that
A(zy,... ,z,) is a polynomial in 7 variables
of degree d < %.

Question: Does there exist z1,... ,x, such
that A(zq,... ,2,) # 07

(Warning: Oracle defined for only one input
length ... you can extend easily.)

Actually testing if polynomial is zero not if
two polynomials are identical; but problems
are virtually same.
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Algebraic preliminaries

Definitions by example:
Multivariate Polynomials:

3x3xs + b — x5

is a polynomial in 2 variables 1 and z5. Its
degree in z; is 3, its degree in x5 is 4 and its
total degree is 5 (largest total degree of the
monomials in it).
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Many Applications

1. Given Matrix M whose entries are linear
functions in zq,...,x,, determine if the
determinant of this matrix is identically
Zero.

2. Given two “Read-Once-Branching Programs”
are they equivalent.

Both problems in RP (or co-RP), but not
known to be in P.
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Polynomial identity testing

Relativized problem.

e As posed: in NP4,
e Will show: in RP*.

e Exercise: not in P,
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Randomized polynomial identity testing

Algorithm:

e Set m = 3d.

e Pick a; €g {1,... ,m} independently.
o If A(ay,... ,an) # 0 accept, else reject.

Clearly in randomized polynomial time.
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Analysis e Bad Event Ei: ¢g(a1,... ,an—1) =0.

e Pr[F]| < (d—d,)/|S| (by induction).
(Famed Lemma:) If a polynomial p of degree

d is non-zero, and S is a finite subset of the e Now assume FE; does not happen. Let
domain of the polynomial, then g9(zn) = p(a,... ,an—1,a,). Note degree
of g is at most d,, and g is not identically

agbl:n[p(a) = 0] <d/|S|. zero.

e Pick z,, = a,, at random now.

Proof: By Induction. o
e Bad Event E5: (F; and g(a,) = 0). Note

o Write Pr[Es] < Pr[Es|Eq] < dn/|S|.
p(z1,. .. ,7n) Zl’f{’q(wh--- Tn1)4r(z, . e Claim: If F; and E5 don’t happen, then
p(a) # 0.
where degree of r in x,, is less than d,,. e Thus Prlp(a) = 0] < Pr[Ei] + Pr[Fs] <
d/|S]|.
e Pick 1 = aq,... ,xp_1 = ay,_ first. /1]
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USTCON in RL Randomized algorithm

USTCON: (Undirected S-T CONnectivity): 1. Initially wés. Set time.left = n®

Given:  Undirected graph G and special
vertices s and t. 2. If u =t, then halt and accept.

Question: Is there a path connecting s to t? 3. If time-left = 0 then halt and reject.

Clearly USTCON in NL. 4. Else pick random index i in {1,... ,d,}.

Surprisingly in RL.
5. Let v to be ith neighbor of w.
(Will assume graph is given by adjacency list

+ vector of degrees.) 6. Let u<wv; decrement time-left; Go to Step
2.

Clearly in RL. Completeness obvious.
Soundness?
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Blurb on soundness

e Process called a “random walk™.

e Special case of "Markov chains”: Prob. of
future event independent of past history,
given current state.

e Random walks are widely studied.
In particular

e Mostly well understood.
following is known.

Lemma: In undirected connected graph with
n vertices, a random walk starting anywhere
reaches every vertex in O(n®) time with
probability 2/3.
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RP Amplification

Suppose M accepts language L with
completeness ¢(n) = 1/n? (and s(n) = 0).
How to amplify completeness?

Amplification: Run machine n* times on
independent random strings y1, ...

accept if one of the y;'s accepts.

, Yn4, and
Pr[3i s.t. M(z,y;)accepts| > 1—(1—1/712)”4
y

Thus completeness 1/poly(n) vs. 1 —exp(n)

are equivalent.
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(Maybe learn about this is a randomized
algorithms course.)
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BPP amplification

e How to use the above idea for BPP?

e Natural idea:

— Repeat N times.
— Accept if # acceptances more than (¢ +
s)N/2.
e Analysis?

— Use "“tail inequalities”.
— "“Chernoff bound".
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Chernoff bounds

Suppose  Xi,...,Xny are independent
identically distributed random variables in the
interval [0, 1] with E[X;] = u.

Then

1
Pr[| =Y Xi—u 2 N < e~ N N/2,
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Consequence: BPP in P/,

Say L € BPP. Assume w.lo.g. that M
is a two input machine recognizing L with
c¢(n) >1—4""and s(n) <1—4"". (Notice
we get this by amplification.)

Say M uses m-bit random strings.

Claim: Exists r € {0,1}™ such that for every
z, M(z,r) = L(z).

Proof: Say y € {0,1}™ is BAD for z if
M(z,y) # L(z).

For any z € {0,1}" there are at most 2™ 2"

y's that are BAD for z.

Taking the union of all BAD sets, there are
at most 27" strings that are BAD for some
x.
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Consequence

Let X; =1 if M(x,y;) accepts and 0 o.w.

Applying Chernoff bounds, we see that if
N ~ m/(c — s)? then amplification increases
completeness to 1 — exp(—m) and decreases
soundness to exp(—m).

Next: Use this to show BPP in P/,
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Since 2™ > 2™~" there exists at least one y
which is not BAD for any z. Setting r<vy
gives the Claim.

Thm: BPP C P/poly.

Proof: P/pory machine is M from the
argument above. For every n, advice string is
the r € {0,1}™ from the claim.
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Next: BPP in PH

Note note quite trivial. How to have
a bounded round interaction to comvince
rzeL?

Consider following game: Kasparov & | are
all powerful players. | want to convince you
(the audience) that € L and Gary claims
otherwise. How can we prove our claims?

Draw picture here.

Most strings are good (M(x,y) = accept); or
very few are good. How to convince you?

Idea 1: I'll divide space into two equal parts
with all bad strings in one part and a bijection
pi between the two parts. | claim every string
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Debate for membership in BPP

Theorem: If x in L there exist rq,... ,79,, €
{0,1}™ such that the y's are covered,; i.e., for
every y there exists an i € [2m] such that
M (z,m,(y)) accepts.

If x not in L, then for any r{,...,ro,, €
{0,1}™ there is an uncovered y.

Assuming theorem: Debate: | announce
r1,...,T2m. Gary challenges with a y. You
compute M(z,y®r1)V---V M(x,y B rom).
If true, | win (z € L) else Gary wins (z ¢ L)
- you decide!
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or its map under bijection is good! If Gary
wants, he can challenge me!

If Gary finds a string y where neither M(x,y)
nor M(x,pi(y)) accept - he wins.

Else | win.

Seems convincing. | can win if bad set is
smaller than 1/2. | can’t win if bad set more
than 1/2.

Problem: How do | give the bijection?

Bijections have to simple: So we'll stick 7, :
y—yor.

In this space of bijections the proof doesn’t go
through. But the idea is starting to emanate.
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Proof of theorem
If xinL

PrM(z,y®r)>1—-2"">1/2.
Pr [3i € [2m] s.t. M(z,y®r;)] > 1-272™,

T15--- sT2m
Pr [Vy €{0,1}™, 3i € 2m] s.t. M (z,yor;)]
T1y---sT2m

Yields first part.
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Proof of theorem (second part)

x not in L. Say | pick best possible r1,... ,rom
below.

Pr[M(z,y ® ;)] < 1/100m.
y

Pr[3i € 2m] s.t. M(z,y ®r;)] < 1/50.
y

QED!
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Current issues in randomness

e Reducing randomness

— Algorithm specific: Limited independence,
Epsilon-bias.

— Generically, during amplification: “Recycling”.

e Using imperfect randomness: Extractors.

e Derandomization: Pseudorandomness,
hardness versus randomness.
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Power of the prover

If I am right - | just need to pick r1,... ,72m,
at random!

If Gary is right, he just needs to pick y at
random.

So we just need randomness to simulate
randomness!

Hmm.... that didn't sound so impressive - |
should have said ...

So we just need one-sided randomness to
simulate two-sided randomness! You'll figure
out what | mean in problem set!
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