A Crash Course on Coding Theory

Madhu Sudan MIT

DIMACS & IBM Workshop IBM Almaden Research Center 6-10 November, 2000

Disclaimer

This is an opinionated survey of coding theory, unbiased by actual reading of papers.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

Some Opinions

Aka: Table of Contents

What Coding Theory has to offer:

- Constructions of Error-correcting codes.
- <u>Bounds</u> (limitations) on the performance of error-correcting codes.
- Algorithms for error-correction.
- <u>Connections</u> to other fields (in our case Theory of Computation).

Some Canonical References

- The Handbook of Coding Theory, volumes I and II.
 - Has everything you want and more.
 - Very much current.
 - Some excellent chapters (e.g. applications to deep-space communication, algebraicgeometry codes).
 - Cost = \$300.
 - Sometimes a bit excessive (e.g. 130 pages of table of best known codes).
- MacWilliams and Sloane: More compressed than above, but a bit outdated.

Some Canonical References (contd.)

- van Lint: Much more handy than above.
- Richard E. Blahut: Stolen from MIT library; must be good! (Update (10/15/2000): Found the book! Is good! Highly recommended.)
- Berlekamp: "The reader looking for simple or elementary proofs is warned ..."
- "Key papers in the development of coding theory": Terrific source book!

In general, not enough emphasis on algorithms. Blahut's book is best source for algorithms. van Lint is good for quick reference.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

History: Ode to Shannon

- Clearly everything started with Shannon's paper titled "A Mathematical Theory of Communication".
- Foundations of Information Theory, as well as Coding Theory. Notion of Entropy of Information.
- Two models of communication: Noiseless and Noisy.
- Goal in former: Compress information to take advantage of redundancy in data. Examples such as: Entropy of English. Coding for the Morse code etc. Leads to Noiseless Coding Theorem.

Breakdown of lectures

- History and definitions
- Constructions 1
- Bounds
- Algorithms
 - Classical RS + linear codes.
 - List decoding; Forney's GMD
 - Linear time algorithms.
 - Random error vs. adversarial error.
- Complexity
- Modern day things: Probabilistic errorcorrection?

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

History: Ode to Shannon (contd.)

- Goal in latter: Add redundancy in data to compensate for channel noise. Leads to Noisy Coding Theorem.
- Coding theory originates from latter.

Example: Binary Symmetric Channel

Transmitter Reciever 0 0 0 0 1 1 -p 0 1

E: Maps k = Rn bits to n bits.

D: Maps n bits to Rn bits.

R: Rate of source < 1.

Fundamental question

 $e(R,p) = \text{Freq. of error as } n \to \infty.$

$$e(R, p) = \lim_{n \to \infty} \left\{ \Pr_{\eta, m} \left[D(E(m)) \neq m \right] \right\}$$

Belief: $R > 0 \Rightarrow e(R, p) > 0$

Noisy coding theorem:

$$\forall p < 1/2, \exists C(p) > 0$$
 s.t. if $R < C(p)$ then $e(R, p) = 0$.

Converse coding theorem:

$$\forall p<1/2, \exists \text{ (same) } C(p)>0$$
 s.t. if $R>C(p)$ then $e(R,p)=1.$

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

© Madhu Sudan, August, 2001. Crash Course on Coding Theory: Lecture One

. .

Some Notations

Hamming Distance: For $x, y \in \Sigma^n$, $\Delta(x, y) = \#$ coordinates s.t. $x_i \neq y_i$.

Hamming Ball:

$$B(x,r) = \{y | \Delta(x,y) \le r\}$$

Binary Entropy Function:

$$H(p) = -(p \log_2 p + (1-p) \log_2 (1-p))$$

Fact: Hamming ball of radius pn has approximately $2^{H(p)n}$ elements.

Addendum to Shannon's Theorem: Capacity of Binary symmetric channel

$$C(p) = 1 - H(p)$$

11

Proof of Coding Theorem

(Uses Probabilistic Method)

Encoding: $E: \{0,1\}^{Rn} \rightarrow \{0,1\}^n$ random.

<u>Decoding</u>: Given y, if $\exists ! x$ such that $E(x) \in B(y, (1+\epsilon)pn)$, then D(y) = x, else arbitrary.

Analysis (ignoring ϵ):

Pr[Decoding Error]

$$\leq \Pr[\# \text{ errors } > pn]$$
 (1)

$$+\Pr[\text{ diff. codeword in }B(y,pn)]$$
 (2)

Prob. (1) small by Chernoff Bounds.

Prob. (2) at most
$$2^{H(p)n} \cdot 2^{Rn} \cdot 2^{-n}$$

 $< \exp(-n)$, if $R < 1 - H(p)$

(Proof shows good E exists.)

Proof of Converse

Transmit random msg.; decoding error =?

D partitions $\{0,1\}^n$ into S_1,\ldots,S_K : S_i decoding to ith message. $(K=2^{Rn})$

Key observations:

- (1) $\Pr[\# \text{ errors } \leq (1 \epsilon)pn] \text{ very small.}$
- (2) If $y \notin B(E(m_i), (1 \epsilon)pn)$ $\Pr[E(m_i) + \eta = y] \le 2^{-H((1 - \epsilon)p)n}$

Analysis (ignoring ϵ):

Prob. decoding correctly

$$\leq$$
 Prob. (1)
+ $\sum_{i} \Pr[\text{transmit } m_i] \cdot |S_i| \cdot 2^{-H(p)n}$
= Prob. (1) +2^{(1-H(p)-R)n}.

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

Variants of Theorem

Strong form of coding theorem:

$$\forall p < 1/2, \exists C(p) > 0$$

s.t. if $R < C(p)$ then $e_n(R,p) = 2^{-En}$, where $E = E_{R,p} > 0$.

 ${\cal E}$ the error exponent is still a subject of investigation.

Profound form of coding theorem:

 \forall noisy channel, \exists capacity

 \forall source, \exists rate

s.t. if rate < capacity,

then information transmission is feasible.

1

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

14

Algorithmic Goals

- Compute E,D in polynomial time, while minimizing =e(R,p).
- ... in linear time?
- For other models of error: η is not i.i.d.?
- E, D to minimize $E[\Delta(m, D(E(m)))].$

Most questions still being studied.

Combinatorial Coding Theory

- e(R, p) too hard to analyze, given E, D.
- Lets study: $\min_{m \neq m'} \{ \Delta(E(m), E(m')) \}.$
- Code $C = \{E(m)|m\}$, over alphabet Σ :

Defn: $\mathcal{C} \subseteq \Sigma^n$ with $|\Sigma| = q$, $|\mathcal{C}| = q^k$ called an $(n,k)_q$ code.

$$\Delta(\mathcal{C}) = \min_{\text{distinct } x, y \in \mathcal{C}} \{\Delta(x, y)\}$$

 \mathcal{C} with $\Delta(\mathcal{C})=d$ also called $(n,k,d)_q$ code.

Warning: Sometimes call this an $(n,q^k,d)_q$ code!

Standard Terminology

If $C = (n, k, d)_q$ code, then:

- $n = \mathsf{Block} \; \mathsf{Length}$.
- k = Information Length.
- d = Distance.
- k/n =(Information) Rate.
- d/n = Distance (Rate).
- q = (Alphabet size).

(Words within parenthesis often omitted.)

©Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

Linear Codes

If Σ field, then Σ^n vector space.

If $\mathcal C$ linear subspace, then $\mathcal C$ linear code.

Denote $[n,k]_q$ or $[n,k,d]_q$ code.

Aside: Finite fields

Often Σ is a field of size q.

Fact: \forall prime powers q, \exists field of size q.

Fact: Given prime p, integer k, field of size $q=p^k$ can be "computed" in time $\operatorname{poly}(p,k)$ stored in space $\operatorname{poly}(\log p,k)$

s.t. field operations can be carried out in time poly(log p, k).

Fact: $\forall l \geq 0$, \exists explicit field of size $2^{2 \cdot 3^l}$.

(Field given by irred. poly of deg.
$$k$$
. $x^{2\cdot 3^l} + x^{3^l} + 1$ is irreducible over Z_2 .)

© Madhu Sudan, August, 2001: Crash Course on Coding Theory: Lecture One

Niceness of Linear Codes

Generator Matrix:

Parity Check Matrix:

 \mathcal{C} linear $\Rightarrow \exists n \times (n-k)$ matrix H s.t. $\mathcal{C} = \{y \in \Sigma^n | yH = 0\}$

Implications:

- ullet C can be represented succinctly.
- Encoding is efficient.
- Error-detection is efficient.
- "Syndrome" (yH) has error information.
- Gives q^{n-k} sized table for decoding. (Useful if n-k small.)

Columns of Parity check define $[n, n-k]_q$ code called the <u>dual code</u> \mathcal{C}^{\perp} .

Distance vs. Weight

Defn: wt(x) = # non-zero coordinates of x.

Observe $\Delta(x,y) = \operatorname{wt}(x-y)$.

Thus $\Delta(\mathcal{C}) = \min_{\vec{0} \neq x \in \mathcal{C}} \{ \operatorname{wt}(x) \}.$

(Note $0 \in \mathcal{C}$ for every linear code \mathcal{C} .)

Basic questions in Coding theory

- Given n, k, q, find $(n, k)_q$ code $\mathcal C$ that $\max \Delta(\mathcal C)$.
- Given n, d, q, find $(n, k)_q$ code \mathcal{C} with $\Delta(\mathcal{C}) \geq d$ that $\max k$.
- Given k, δ, q , find $(n, k)_q$ code $\mathcal C$ with $\Delta(\mathcal C) \geq \delta n$ that minimizes n. (Better phrasing of algorithmic question.)
- Given n, k, d, find $(n, k)_q$ code \mathcal{C} with $\Delta(\mathcal{C}) \geq d$ that ???imizes q. (Actually a very nice perspective.)