Course Overview

- Algebra is the study of *sets* with *binary operations*, such as:

<table>
<thead>
<tr>
<th>Set</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>integers</td>
<td>addition & multiplication</td>
</tr>
<tr>
<td>reals</td>
<td>"</td>
</tr>
<tr>
<td>$n \times n$ matrices</td>
<td>"</td>
</tr>
<tr>
<td>polynomials</td>
<td>"</td>
</tr>
<tr>
<td>vectors</td>
<td>addition</td>
</tr>
<tr>
<td>n-bit strings</td>
<td>bitwise XOR</td>
</tr>
<tr>
<td>permutations over ${1, \ldots, n}$</td>
<td>composition</td>
</tr>
<tr>
<td>symmetries of a crystal</td>
<td>"</td>
</tr>
</tbody>
</table>

- In addition to studying these specific sets & operations individually, we identify general *properties* shared by many of them, such as:
 - commutativity: $a \cdot b = b \cdot a$
 - inverses (e.g. $-a$ for addition, a^{-1} for multiplication)
 - unique factorization

- By *abstracting* such properties, algebra unifies our understanding of many disparate mathematical structures.

- Abstract algebra is useful in many science and engineering applications. Three that we will cover in this course:
 - Crystallography: the symmetry group of a crystal gives information about its physical properties.
 - Cryptography: encrypting data so that only the intended recipient can decrypt.
 - Error-correcting codes: encoding data so that it can be recovered from errors.

1. These notes are copied mostly verbatim from the lecture notes from the Fall 2010 offering, authored by Prof. Salil Vadhan. I will attempt to update them, but apologies if some references to “my daughters Malia and Sasha” remain.
2 The Integers

- Reading: Gallian Chapter 0.
- The integers are \(\mathbb{Z} = \{ \ldots, -3, -2, -1, 0, 1, 2, 3, \ldots \} \).
- The natural numbers are \(\mathbb{N} = \{ 0, 1, 2, \ldots \} \).
- Three (equivalent) forms of induction:
 - Well-ordering Principle: every nonempty subset of \(\mathbb{N} \) has a least element.
 - Standard Induction (Thm 0.4): if \(0 \in S \) and for all \(n \in \mathbb{N} \) we have \(n \in S \Rightarrow n + 1 \in S \), then \(S \) contains all of \(\mathbb{N} \). (Induction can also be started at an arbitrary integer \(a \in \mathbb{Z} \) instead of 0; see text.)
 - Strong Induction (Thm 0.5): if \(0 \in S \) and for all \(n \in \mathbb{N} \) we have \(\{ 0, \ldots, n \} \subseteq S \Rightarrow n + 1 \in S \), then \(S \) contains all of \(\mathbb{N} \).
- Induction usually formulated in terms of sequences of mathematical statements \(P(0), P(1), \ldots \), e.g. \(P(n) = "1 + \cdots + n = n \cdot (n + 1)/2" \). Correspondence to versions in terms of sets (Thms 0.4,0.5) is \(S = \{ n : P(n) \text{ true} \} \).
- Proposition: For all \(n \in \mathbb{N} \), \(1 + 2 + \cdots + n = \frac{n(n+1)}{2} \).

Proof by Induction:

- Thm 0.4: The Well-ordering Principle implies Standard Induction.

Proof:

- Other directions are left as an exercise.