Problem 1. (Cosets [AM106]) Let \(H = \{e, (12)(34), (13)(24), (14)(23)\} \leq S_4. \)

1. List the left-cosets of \(H \) in \(S_4 \).

2. We can also view \(H \) as a subgroup of \(S_6 \). How many left-cosets does \(H \) have in \(S_6 \)?

Problem 2. (Subgroups of \(\mathbb{C}^* \)) Determine all of the finite subgroups of \(\mathbb{C}^* \). Justify your answer. (Hint: what are the solutions to \(a^n = 1 \) in \(\mathbb{C}^* \)?)

Problem 3. (Orbits and Stabilizers for the Cube) Let \(G \) be the group of rotational symmetries of a regular cube in \(\mathbb{R}^3 \). (We do not include reflections in \(G \).)

1. Among points \(s \) on the surface of the cube (including edges and corners), what are the possible orbit sizes? For each answer \(a \) you give, provide an example of a point \(s \) with with \(|\text{orb}_G(s)| = a \).

2. For each point \(s \) above, describe \(\text{stab}_G(s) \).
Problem 4. (Classification of Abelian Groups [AM106-A]) Determine which of the following groups are isomorphic to each other:

1. \mathbb{Z}_{40}.
2. $\mathbb{Z}_8 \times \mathbb{Z}_5$.
3. $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_5$.
4. \mathbb{Z}_{55}^*.
5. \mathbb{Z}_{88}^*.
6. \mathbb{Z}_{100}^*.

Problem 5. (Richness of \mathbb{Z}_n^* [AM206-A]) Dirichlet’s Theorem says that if a and b are relatively prime integers, then the arithmetic progress $\{a + tb : t \in \mathbb{Z}\}$ contains infinitely many prime numbers. Use this to show that for every finite abelian group G, there is an $n \in \mathbb{N}$ such that $G \leq \mathbb{Z}_n^*$. (This result is similar in spirit to Cayley’s Theorem, which says that for every finite group (even non-abelian), there is an $n \in \mathbb{N}$ such that $G \leq S_n$.)